首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
强夯法处理填土地基试验研究   总被引:1,自引:0,他引:1  
刘斌 《四川建筑》2010,30(1):95-96
通过对强夯加固填土进行现场试验研究,分析了强夯加固前后地基的物理力学特性和不同夯击能下强夯有效加固深度。得出强夯加固地基存在盲区(距地表50cm左右),且强夯影响深度可大致分为高加密区、中加密区和低加密区。有效加固深度随夯击能增加而增大,有效加固深度为锤底直径的2.5倍左右。  相似文献   

2.
从强夯法加固地基的机理入手,对青岛地区粗颗粒填土的强夯有效加固深度进行了探讨,提出了青岛地区强夯有效加固深度经验公式。针对强夯后地基土强度随深度仍不均匀的实际情况,提出最佳有效加固深度区间的概念。在大量工程经验的基础上,提出了适用于粗颗粒填料的低能量连续强夯(排夯)施工工艺。结合试夯实例,对低能量连续强夯(排夯)施工工艺的实施效果和对夯后地面标高的确定等问题进行了讨论。  相似文献   

3.
高能级强夯的加固效果显著,应用范围越来越广泛,有效加固深度是评判加固效果和确定强夯方案的重要指标。以10 000kN·m高能级强夯加固某抛填路基工程为背景,采用FLAC 3D有限差分软件进行单点多次夯击的强夯数值模拟,以夯击后的应力为标准来计算有效加固深度。结果表明:随夯击次数的增加,有效加固深度先增大后稳定,6击后有效加固深度的增幅极小。经正交试验和极差分析得到土体参数对强夯有效加固深度的敏感性排序。落距和锤重与有效加固深度呈正相关关系,锤径则为负相关关系。锤重对有效加固深度的影响大于落距,在夯击能相同时,重锤低落所得到的累计夯沉量与有效加固深度均更大。提出强夯有效加固深度估算公式,并实现了量纲统一,该公式与模拟结果偏差较小。  相似文献   

4.
利用4种不同的夯击能量(840,960,1 080,1 200 kN.m)对红砂岩填土路基分别进行动应力扩散和夯后路基的沉降试验研究。试验结果表明:强夯对红砂岩填土路基的加固效果明显,动应力在水平方向上的有效加固宽度从2~3 m变化至3~4 m,在竖直方向上的有效加固深度从3.5~4.0 m变化至5.0~6.0 m;随着夯击次数的增加,动应力在有效加固范围内的增加亦更加明显,但在3~5击后基本稳定;4种夯击能量在土体中产生的变形为4.0~6.0 m的变化比较显著,但当深度超过6.0 m的之后,产生的沉降量就几乎相等,而且在不同夯击能量以及在不同夯击次数下,其最终的下沉位移在5.5 m处都为5.0~7.0 cm,因此这4种夯击能量在红砂岩碎石土高填方路基中的有效加固深度基本上都在4.0~6.0 m之间。这些试验成果可为以后同种条件下的山区公路加固提供参考。  相似文献   

5.
滨海含软土夹层粉细砂地基高能级强夯加固试验研究   总被引:1,自引:0,他引:1  
滨海粉细砂场地地基常分布有软土夹层或淤泥包且地下水位较高,地基处理难度大。目前采用高能级强夯加固滨海粉细砂场地的工程案例较少。结合具体工程研究了某地下水位较高且含软土夹层的滨海粉细砂场地上开展的5、8、12、15MN·m能级强夯加固试验。除5MN·m能级强夯试验区外,其余试验区均先采取高能级点夯加固深层土体,然后采用中等能级点夯加固夯点间土,最后利用低能级满夯加固地基浅层。对比分析了夯沉量和强夯前后的旁压、静力触探测试数据,发现夯击7~8击后夯沉量变化明显减小,每遍的单点夯击击数宜控制在8~9;在有效加固深度范围内,土体的旁压模量和静力触探锥尖阻力均明显提升,高能级强夯能有效消除滨海粉细砂的液化势。试验场地内上述各个能级的有效加固深度分别为7.5、9、10.5、10m,在有效加固深度范围内,表征土体相对加固程度的提升系数沿深度大致呈直线下降。现场试验数据还表明,将地下水位降低到距地表以下2.5m有助于提高加固效果;软土夹层的存在会明显影响加固效果及限制有效加固深度的发展,因受软土夹层的影响,场地15MN·m能级强夯的有效加固深度明显偏小。建议在级配不良的滨海粉细砂场地上按照规范JGJ 79—2012中细颗粒土的标准来确定高能级强夯的有效加固深度。  相似文献   

6.
通过碎石土回填地基采用高能级强夯技术的工程实例,得到了大量的静载试验、动力触探等现场实测数据,比较完整地反映了12000kN.m高能级强夯的加固效果,分析比较了碎石填土地基夯前和夯后的土工性能指标、地基承载力及变形模量。研究表明,深度12m以内各土层的地基承载力均具有较大幅度的提高,可为其它工程高能级强夯技术的施工、检...  相似文献   

7.
强夯加固粉土地基试验研究   总被引:2,自引:0,他引:2  
在某机场飞行区进行强夯加固浅层粉土地基的现场试验,对地表沉降、地下水位和孔隙水压力等进行了监测,并在试验后进行静力触探试验和标准贯入试验。结果表明:强夯处理后消除了地层6 m深度范围内粉土地基的液化,同时改善了该范围内土层的工程性质。强夯前需采取降水措施,可有效避免出现夯坑内积水和场地局部液化现象,强夯加固产生的超静孔隙水压力消散比较快。强夯施工间隔1 d后不同深度的超静孔隙水压消散比例都超过80%,间隔5 d后超静孔隙水压基本消散,点夯加满夯处理的加固效果整体上好于满夯,并且较小单击夯能和较多夯击次数的点夯施工工艺可以获得较好的加固效果,采用1 500 kN.m夯能点夯两遍和800 kN.m夯能满夯一遍的施工工艺较为合理。  相似文献   

8.
依托铜陵有色铜冶炼工艺技术升级改造工程项目,选取强夯试验区,介绍10000kN·m能级强夯处理填土地基的夯击情况,对强夯施工后的效果进行现场和室内检测试验。得到强夯对此场地的有效加固深度达到9m,地基承载力提高到180kPa,压缩模量提高到24.47MPa,压实系数达到0.95,满足设计要求。为此类地基加固工程提供成功案例和技术参考。  相似文献   

9.
李英涛  于海 《山西建筑》2005,31(24):112-113
对回填土造成的已筑坝体,通过高能级强夯试验,研究探讨了强夯处理超厚填土地基的加固深度、影响深度及处理后的渗透性问题,表明强夯处理回填土已筑坝体的可行性。  相似文献   

10.
目前,强夯法加固吹填土地基应用很广,然而在吹填土地基加固的工程实践中所采取的单点夯击能量选择方面的分歧却相差很大。依托某油库区的吹填土地基工程,选用工程地质条件非常相近的3个场地分别进行不同能量的强夯试验,根据3种不同夯击能量下的强夯试验结果,比较不同强夯能量下,夯坑沉降量随着夯击次数和夯击遍数的变化趋势、孔隙水压力的演化过程、侧向位移和地表沉降的变化过程;最后,结合静力触探试验、标准贯入试验和荷载试验结果对不同强夯能量下吹填软土地基加固效果进行分析。研究表明,强夯能量是影响吹填土地基加固效果的重要因素,较大的夯击能量并不有利于吹填土地基的加固,存在一个最佳的强夯能量,在该能量下强夯的效果最好。  相似文献   

11.
12.
13.
14.
15.
16.
17.
Brücke Wolken     
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号