首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aldosterone and thyroid hormone regulation of Na,K-pump biosynthesis has been examined in the distal colon epithelium of rabbits. Qualitative analysis of alpha-subunit isoform distribution (alpha 1, alpha 2, alpha 3) detected only the alpha 1-mRNA in the distal colon epithelium and outer renal medulla, while all three isoforms were observed in rabbit brain. A low-sodium diet led to a rise in serum aldosterone from 0.6 nM to 1.4-1.9 nM and an increase of alpha 1-mRNA to 162%, beta 1-mRNA to 120%, and the number of Na,K-pump units as determined by specific [3H]-ouabain binding to 182% of control by the second day of the diet. While aldosterone levels remained elevated, a spontaneous decrease in serum levels of T3 and T4 to 50-60% of control from the third day of the diet was followed by downregulation of beta 1-mRNA to 55-67%, alpha 1-mRNA to 63-105%, and of [3H]-ouabain binding to 103% of control, suggesting that a reduced rate of synthesis of the beta 1-subunit is rate limiting for Na,K-pump biosynthesis. Substitution with T3 (10 micrograms/kg) at the seventh day with transient restoration of serum T3 to control levels, led to rapid accumulation of beta 1-mRNA to 152%, of alpha 1-mRNA to 135%, and of the number of Na,K-pump units to 153% of control. This is consistent with thyroid hormone having a permissive role for the aldosterone stimulation of Na,K-pump biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Cellular and molecular mechanisms regulating the activity of the sodium pump or Na,K-ATPase during proliferation of hepatocytes following 70% liver resection have not been defined. Na,K-ATPase may be regulated by synthesis of its alpha- and beta-subunits, by sorting to either the sinusoidal or apical plasma membrane domains, or by increasing membrane lipid fluidity. This study investigated the time course of changes during hepatic regeneration for Na, K-ATPase activity, lipid composition and fluidity, and protein content of liver plasma membrane subfractions. As early as 4 h after hepatic resection, Na,K-ATPase activity was increased selectively in the bile canalicular fraction. It reached a new steady state at 12 h and remained elevated for 2 days. Although hepatic regeneration was associated with a reduced cholesterol/phospholipid molar ratio and increased fluidity, measured with two different probes, these changes in lipid metabolism were in the sinusoidal membrane domain. The Na,K-ATPase beta1-subunit, but not the alpha1-subunit, was increased selectively at the bile canalicular surface as shown by immunoblotting of liver plasma membrane subfractions and the morphological demonstration at both the light and electron microscopic levels. Furthermore, cycloheximide blocked the rise in beta1-subunit mRNA levels. Since the time course for beta1-subunit accumulation was similar to that for activation of Na,K-ATPase activity, this change implicated the beta1-subunit in activating sodium pump activity.  相似文献   

3.
4.
5.
BACKGROUND: Sodium-potassium-adenosinetriphosphatase (Na,K-ATPase) is the primary membrane enzyme responsible for the reabsorption of sodium ions in the kidney. It is known that in the nephron the major subunit isoforms of Na,K-ATPase are alpha 1 and beta 1. Previous reports on the presence of alpha 2 and alpha 3 isoforms in the kidney were mixed and controversial. METHODS: Techniques of ultrathin cryosectioning and immunoelectron microscopy were used to study the distribution of alpha subunit isoforms (alpha 1, alpha 2, alpha 3) and beta subunit (beta 1 isoform) of Na,K-ATPase in renal tubular cells. Western blot analysis was used to show the presence of the alpha 3 isoform in the extract of kidney mitochondria. RESULTS: We were able to confirm the previous finding that the alpha 1 isoform and the beta 1 isoform were the preponderant isoforms of the alpha and beta subunits of Na,K-ATPase in the basolateral membrane. In addition, we unexpectedly found the presence of the alpha 3 isoform in the mitochondria of rat renal tubular cells. The alpha 2 and alpha 3 isoforms were not observed in either the apical or basolateral membrane. CONCLUSIONS: Both immunoelectron microscopy and Western blot analysis of the rat kidney mitochondria confirm the presence of the alpha 3 isoform of Na,K-ATPase in the rat kidney mitochondria. The function of this enzyme in the mitochondria is not clear at this time.  相似文献   

6.
Glucocorticoids promote the development of many organs including intestine. At the cellular level, the activity of glucocorticoids is regulated by 11 beta-hydroxysteroid dehydrogenase (11 beta HSD) which converts active glucocorticoids to inactive metabolites. As 11 beta HSD is also expressed in the intestine, this enzyme may be an important regulator of intestinal maturation. To investigate this, we have performed the systematic study of the development of intestinal 11 beta HSD activity and its cofactor preference as well as of the effect of 11 beta HSD inhibition by carbenoxolone on postnatal development of sucrase, alkaline phosphatase and Na,K-ATPase in the intestine. The activity of 11 beta HSD was low in ileum of suckling rats and significantly increased during the weaning period. In colon, the activity was already high in suckling rats and gradually rose during the postnatal development. 11 beta HSD activity was undetectable in jejunum both in young and adult rats. At 14.5 nM corticosterone, colonic 11 beta HSD utilized predominantly NAD as a cofactor, but displayed significant sensitivity also to NADP. Ileal 11 beta HSD had similar sensitivity to both cofactors. With NAD as a cofactor, ileal 11 beta HSD had a Km (59 +/- 10 nM) compatible with the colonic enzyme (81 +/- 14 nM). Carbenoxolone administration to suckling and weanling rats in vivo did not result in any changes of sucrase activity in jejunum and ileum, alkaline phosphatase activity in ileum and distal colon or Na,K-ATPase activity in ileum. However, carbenoxolone significantly increased Na,K-ATPase activity in distal colon. Our results indicate that the high-affinity type of 11 beta HSD is expressed not only in colon but also in ileum and that 11 beta HSD is an important factor in the regulation of tissue levels of active glucocorticoids in developing colon but not in the small intestine.  相似文献   

7.
The development of gastric H,K-ATPase from fetal to adult life was studied in the rat. The alpha and beta H,K-ATPase mRNA abundance, the protein abundance, and the enzyme activity increased postnatally. The sharpest increase in mRNA and enzyme activity was observed in the weaning period. Several intestinal enzymes are known to be stimulated by glucocorticoids at the time of weaning. To study the role of glucocorticoids in the maturation of gastric H,K-ATPase, we treated 10-d-old rats with a single injection of betamethasone. Twenty-four hours after betamethasone injection, the enzyme activity was significantly higher than in the control animals (2.6-fold, p < 0.05). The abundance of catalytic alpha H,K-ATPase protein was also increased (2.5-fold, p < 0.01). The time-dependent effect of betamethasone on alpha H,K-ATPase mRNA was determined from 6 to 24 h after treatment. Glucocorticoids did not significantly alter the mRNA abundance within 18 h. Twenty-four hours after injection, the gastric H,K-ATPase mRNA was significantly increased compared with controls (2.8- and 2.2-fold increase for alpha and beta subunits, respectively, P < 0.01 for both). In conclusion this study indicates that glucocorticoids may regulate the long-term maturation of gastric H,K-ATPase by indirectly stimulating enzyme synthesis.  相似文献   

8.
9.
Native gamma-aminobutyric acid type A (GABAA) receptors containing different beta-subunit variants were identified immunobiochemically with antisera recognizing selectively the beta 1-, beta 2-, or beta 3-subunit. As determined by immunoprecipitation, the beta 2-subunit was present in 55-60% of GABAA receptors, while only minor receptor populations contained the beta 1-subunit (16-18%) or the beta 3-subunit (19-25%). Since the sum of these values amounts to about 100%, it is concluded that GABAA receptors largely contain only a single type of beta-subunit. Pharmacologically, receptors containing the beta 2-subunit differed from those containing the beta 1- or beta 3-subunit by their differential affinities for benzodiazepine receptor ligands. The subunit composition was analyzed biochemically in receptors immunoprecipitated by the beta 2-subunit antiserum. The beta 2-subunit was preferentially associated with the alpha 1-subunit (rarely with the alpha 2-subunit) and with the gamma 2-subunit; negligible or no immunoreactivity was detected for the alpha 3-, alpha 5-, or beta 1-subunit. A stringent co-expression of alpha 1- and beta 2-subunits was confirmed by double immunofluorescence staining on the cellular level. Neurons expressing the beta 3-subunit immunoreactivity were largely double labeled by the alpha 2-subunit antiserum. Thus, the subunit combinations alpha 1 beta 2 gamma 2 and alpha 2 beta 3 gamma 2 represent two main GABAA receptor subtypes, which together amount to 75-85% of the diazepam-sensitive GABAA receptors.  相似文献   

10.
Expression of Na, K-ATPase in yeast allowed targeting of alpha beta-units with lethal substitutions at the phosphorylation site alpha 1 (D369N) beta 1 and alpha 1 (D369A) beta 1 at the cell surface at the same concentration of alpha-subunit and [3H] ouabain binding sites as for wild type Na, K-ATPase. Phosphorylation and reaction with vanadate were abolished, and the mutations had no Na, K-ATPase or K-phosphatase activity. Binding of [3H]-ATP at equilibrium revealed an intrinsic high affinity of the D369A mutation for ATP (KD = 2.8 nM) that was 39-fold higher than for wild type Na, K-ATPase (KD = 109 nM). The affinities for ADP were unaffected, indicating that the negative charge at residue 369 determines the contribution of the gamma-phosphate to the free energy of ATP binding. Analysis of the K(+)-ATP antagonism showed that the reduction of charge and hydrophobic substitution at Asp369 of the alpha-subunit caused a large shift in conformational equilibrium toward the E2-form. This was accompanied by a large increase in affinity for [3H] ouabain in Mg2+ medium with KD = 4.9 nM for D369A compared to KD = 51 nM for D369N and KD = 133 nM for wild type, and [3H] ouabain binding (KD = 153 nM) to D369A was detectable even in absence of Mg2+. In addition to its function as receptor of the gamma-phosphate of ATP, Asp369 has important short-range catalytic functions in modulating the affinity for ATP and long-range functions in governing the E1-E2 transitions which are coupled to reorientation of cation sites and changes in affinity for digitalis glycosides.  相似文献   

11.
Age-dependent changes in the expression of Na,K-ATPase alpha 1- and alpha 3-mRNAs were analyzed in the rat cerebellum by in situ hybridization. In young rats, alpha 1-mRNA showed prominent labeling in the granular layer (GL) with moderate fine distribution in the molecular layer (ML), Purkinje cell layer (PCL), and white matter (WM) but no clusters over Purkinje cells (PCs). In old rats, alpha 1-mRNA remained unchanged in ML and PCL, but declined by 43% (P < 0.0001) in GL and increased by 624% (P < 0.0001) in WM. alpha 3-mRNA in young rats showed large clusters of label on stellate, basket, Golgi, and PCs and fine grains diffusely in ML, GL, and WM. In old rats, alpha 3-mRNA declined by 87% in ML, 83% in PCL, 84% per PC, and 89% in GL and increased by 111% in WM (all values P < 0.0001) relative to young rats. PC numbers were reduced by 30%, but the average area of PC profiles did not change significantly. In old rats, the specific cluster-like label related to alpha 3-mRNA on PCs, stellate, basket, and Golgi cells was lost. Immunocytochemistry of cerebellum and hippocampus showed no age-related change in the distribution and density of total catalytic polypeptide. Thus, the discordance between changes in the levels of mRNAs in neuronal layers and WM in the face of constant polypeptide levels indicates age-related changes in polypeptide turnover. Cell- and isoform-specificity of alpha-isoform mRNAs in aging rat cerebellum may reflect differential regulation underlying age-related impairments in signal transduction and motor learning.  相似文献   

12.
The Na,K-ATPase activity of the sodium pump exhibits apparent multisite kinetics toward ATP, a feature that is inherent to the minimal enzyme unit, the alpha beta protomer. We have argued that this should arise from separate catalytic and noncatalytic sites on the alpha beta protomer as fluorescein isothiocyanate (FITC) blocks a high affinity ATP site on all alpha subunits and yet the modified Na, K-ATPase retains a low affinity response to nucleotides (Ward, D. G., and Cavieres, J. D. (1996) J. Biol. Chem. 271, 12317-12321). We now find that 2'(3')-O-(2,4,6-trinitrophenyl)8-azido-adenosine 5'-diphosphate (TNP-8N3-ADP), a high affinity photoactivatable analogue of ATP, can inhibit the K+-phosphatase activity of the FITC-modified enzyme during assays in dimmed light. The inhibition occurs with a Ki of 140 microM at 20 mM K+; it requires the adenine ring as 2'(3')-O-(2,4 6-trinitrophenyl) (TNP)-UDP or TNP-uridine are less potent and 2,4,6-trinitrobenzene-sulfonate is ineffective. Under irradiation with UV light, TNP-8N3-ADP inactivates the K+-phosphatase activity of the fluorescein-enzyme and also its phosphorylation by [32P]Pi. The photoinactivation process is stimulated by Na+ or Mg2+, and is inhibited by K+ or excess TNP-ADP. In the presence of 50 mM Na+ and 1 mM Mg2+, TNP-8N3-ADP photoinactivates with a K0.5 of 15 microM. Furthermore, TNP-8N3-ADP photoinactivates the FITC-modified, solubilized alpha beta protomers, even more effectively than the membrane-bound fluorescein-enzyme. These results strongly suggest that catalytic and allosteric ATP sites coexist on the alpha beta protomer of Na,K-ATPase.  相似文献   

13.
Site-directed mutagenesis and assay of Rb+ and Tl+ occlusion in recombinant Na,K-ATPase from yeast were combined to establish structure-function relationships of amino acid side chains involved in high-affinity occlusion of K+ in the E2[2K] form. The wild-type yeast enzyme was capable of occluding 2 Rb+ or Tl+ ions/ouabain binding site or alpha 1 beta 1 unit with high apparent affinity (Kd(Tl+) = 7 +/- 2 microM), like the purified Na,K-ATPase from pig kidney. Mutations of Glu327(Gln,Asp), Asp804(Asn, Glu), Asp808(Asn, Glu) and Glu779(Asp) abolished high-affinity occlusion of Rb+ or Tl+ ions. The substitution of Glu779 for Gln reduced the occlusion capacity to 1 Tl+ ion/alpha 1 beta 1-unit with a 3-fold decrease of the apparent affinity for the ion (Kd(Tl+) = 24 +/- 8 microM). These effects on occlusion were closely correlated to effects of the mutations on K0.5(K+) for K+ displacement of ATP binding. Each of the four carboxylate residues Glu327, Glu779, and Asp804 or Asp808 in transmembrane segments 4, 5, and 6 is therefore essential for high-affinity occlusion of K+ in the E2[2K] form. These residues either may engage directly in cation coordination or they may be important for formation or stability of the occlusion cavity.  相似文献   

14.
This study was undertaken to examine the combined effect of nitric oxide (NO) and hyperoxia on lung edema and Na,K-ATPase expression. Newborn piglets were exposed to room air (FiO2 = 0.21), room air plus 50 ppm NO, hyperoxia (FiO2 >/= 0.96) or to hyperoxia plus 50 ppm NO for 4-5 days. Animals exposed to NO in room air experienced only a slight decrease in Na,K-ATPase alpha subunit protein level. Hyperoxia, in the absence of NO, induced both the mRNA and the protein level of Na,K-ATP-ase alpha subunit and significantly increased wet lung weight, extravascular lung water, and alveolar permeability. NO in hyperoxia decreased the hyperoxic-mediated induction of Na,K-ATPase alpha subunit mRNA and protein while wet lung weight, extravascular lung water, and alveolar permeability remained elevated. These results suggest that 50 ppm of inhaled NO may not improve hyperoxic-induced lung injury and may interfere with the expression of Na,K-ATPase which constitutes a part of the cellular defense mechanism against oxygen toxicity.  相似文献   

15.
The objective of this study has been to determine which Na,K-ATPase isoforms are expressed in red blood cells and whether kinetic differences in the uncoupled sodium efflux mode between the human red blood cell Na,K-ATPase and other preparations can be explained by differences in the underlying subunit composition. To this end, human reticulocyte RNA was isolated, reverse transcribed, amplified by PCR and appropriate primers, and sequenced. Primers from highly conserved areas as well as isoform-specific primers were used. The alpha1 and alpha3 isoforms of the alpha subunit, and the beta2 and beta3 isoforms of the beta subunit were found. The complete coding regions of the cDNAs for the reticulocyte subunits were sequenced from overlapping PCR fragments. No difference was found between the reticulocyte isoforms and the ones already known. The fact that we found beta2 but not beta1 in reticulocyte single-stranded cDNA, and beta1 but not beta2 in a leukocyte library indicates that leukocyte contamination of our reticulocyte preparation was negligible. Analysis of a human bone marrow library showed that alpha1, alpha2, and alpha3 as well as all three beta isoforms were present. The extent to which the kinetic properties of uncoupled sodium efflux might depend on different isoform combinations is not yet known.  相似文献   

16.
The alpha 4 integrins mediate leukocyte adhesion to specific counter-receptors, including vascular cell adhesion molecule-1 (VCAM-1), the fibronectin splice variant containing connecting segment 1 (CS1), and mucosal addressin cell adhesion molecule-1. A series of cyclized peptides based on the LDV sequence of CS1 were synthesized and assayed for inhibition of alpha 4 integrin binding. The most potent peptide, C*WLDVC* (where * indicates disulfide-linked residues), inhibited alpha 4 beta 1-dependent binding of lymphocytes to VCAM-1 and CS1 with half-maximal inhibition achieved at 1 to 3 microM of peptide. The peptide proved more potent when the lymphocytes were activated with 1 mM MnCl2; half-maximal inhibition was reached at 0.4 and 0.05 microM for VCAM-1 and CS1, respectively. This represents a 100- to 800-fold increase in potency over a linear CS1 peptide in these same assays. C*WLDVC* also inhibited alpha 4 beta 7-dependent lymphocyte binding to the ligands mucosal addressin cell adhesion molecule-1, VCAM-1 and CS1. Immunoprecipitation of radiolabeled integrin indicated that the peptide could bind alpha 4 beta 1 and alpha 4 beta 7 directly and elute alpha 4 beta 1 from a CS1-conjugated agarose resin. The peptide showed selectivity for alpha 4 integrins in that it effectively inhibited alpha 4 beta 1-dependent, but not alpha 5 beta 1-dependent, binding of cells to intact fibronectin. Due to its small size and potency, C*WLDVC* may serve as a useful tool for the study of alpha 4 integrin biology and the development of small molecule therapeutics.  相似文献   

17.
Na, K-ATPase is an integral plasma membrane protein and plays essential roles such as maintaining sodium and potassium ion gradients across the plasma membrane. The enzyme consists of the alpha and the beta subunits with the stoichiometry of one to one. Three alpha subunit and two beta subunit isoforms have been detected in animal cells with the tissue-specific expression of both subunits. Recent advances in molecular biological studies on the Na, K-ATPase enable us to understand the structure-function relationships and mechanisms of intracellular transport of the enzyme. In this article we review the findings deduced from these studies, especially on the assembly and transport to the plasma membrane of the alpha and beta subunits.  相似文献   

18.
PURPOSE: To examine the effect of captopril, an angiotensin-converting enzyme (ACE) inhibitor, on the activity of retinal sodium-potassium ATPase (Na,K-ATPase) and the activity of ACE in the serum and retina of streptozotocin (STZ)-induced diabetic rats. METHODS: Experimental diabetes was induced in male Long-Evans rats by a single intraperitoneal injection of STZ (55 mg/kg body weight). Some groups of normal and diabetic animals were treated with captopril (10 mg/kg per day) added to the drinking water for either a week or a month. After 2 and 4 months of diabetes, the specific activity of retinal total Na,K-ATPase was determined. The components of the activity of Na,K-ATPase caused by the alpha 1 and alpha 3 isoforms were pharmacologically separated by their different sensitivity to ouabain. The activity of ACE in the serum and retina was measured by radioassay using benzoyl-gly-gly-gly as substrate (10(5) cpm, 5 mM). RESULTS: The total Na,K-ATPase activity was decreased significantly after 2 (16%, P < 0.02) and 4 months (15%, P < 0.02) of diabetes. At both time points examined, the activities of the alpha 1-low-ouabain-affinity isoform and the alpha 3-high-ouabain-affinity isoform of retinal Na,K-ATPase were significantly reduced compared to those of age-matched controls (alpha 1, 9% to 14%, P < 0.05; alpha 3, 14% to 19%, P < 0.05 and P < 0.02 respectively). After 1 month of captopril administration, the activities of both Na,K-ATPase isoforms were at control level in 2-month diabetic rats, whereas they were restored only partially in 4-month diabetic rats. In age-matched normal animals, 1 month of captopril treatment did not alter the specific activities of either Na,K-ATPase isoform. One week or 1 month of captopril administration to diabetic rats did not change the activities of retinal Na,K-ATPase isoforms. Serum ACE activity was elevated significantly in both groups of untreated STZ rats (55% and 40%, respectively). One month of captopril administration further increased the ACE levels in 2- and 4-month diabetic rats (101% and 94%, respectively) and also enhanced significantly the serum ACE activity in normal animals (131%) versus the basal values. In contrast, retinal ACE activity was decreased significantly in both groups of untreated STZ rats (approximately 37%). Captopril exerted a significant inhibitory effect on the retinal ACE activity in 2- and 4-month diabetic rats (37% and 31%, respectively) compared to untreated diabetic animals as well as in normal rats (29%). CONCLUSIONS: These data suggest that stimulation of retinal Na,K-ATPase activity in diabetes is most likely one of the mechanisms through which captopril can improve retinal complications. The effect of captopril seems to be related to local effects in the retina. Whether the inhibition of retinal ACE is part of the mechanism of action of captopril requires further study.  相似文献   

19.
Adhesion molecule on glia (AMOG) represents the beta 2-subunit of murine Na,K-ATPase. Mice carrying a targeted deletion of the AMOG/beta 2 gene exhibit tremor and limb paralysis at postnatal day (P) 15 and die 2 days after the onset of symptoms. The brains of these mice show edema and swelling of astrocytic end feet. However, the cause of death has remained unclear. To identify long-term consequences of AMOG/beta 2 deficiency, we have grafted parts of the embryonic telencephalic anlage of AMOG/beta 2-deficient mice into the caudoputamen of wild-type mice and analyzed the grafts up to 500 days after transplantation. Histological, immunocytochemical, and in situ hybridization techniques were applied to examine histoarchitecture, proliferation, differentiation, and long-term survival of grafts. AMOG/beta 2-deficient telencephalic grafts develop normally and form solid neural tissue that cannot be distinguished from control grafts by morphological features or with immunocytochemical stains for neuronal and glial markers. No signs of degeneration can be found. Expression analysis, however, revealed that no AMOG/beta 2 protein of possible host origin can be detected in AMOG/beta 2-deficient grafts. Graft-borne astrocytes express neither the AMOG/beta 1 nor the AMOG/beta 2 subunit of Na,K-ATPase as examined with immunocytochemistry and in situ hybridization. These findings indicate that AMOG/beta 2 is not necessary for long-term survival of telencephalic graft tissue.  相似文献   

20.
Glucocorticoids (GC) and mineralocorticoids (MC) have profound regulatory effects upon the central nervous system (CNS). Hormonal regulation affects several molecules essential to CNS function. First, evidences are presented that mRNA expression of the alpha3 and beta1-subunits of the Na,K-ATPase are increased by GC and physiological doses of MC in a region-dependent manner. Instead, high MC doses reduce the beta1 isoform and enzyme activity in amygdaloid and hypothalamic nuclei, an effect which may be related to MC control of salt appetite. The alpha3-subunit mRNA of the Na,K-ATPase is also stimulated by GC in motoneurons of the injured spinal cord, suggesting a role for the enzyme in GC neuroprotection. Second, we provide evidences for hormonal effects on the expression of mRNA for the neuropeptide arginine vasopressin (AVP). Our data show that GC inhibition of AVP mRNA levels in the paraventricular nucleus is sex-hormone dependent. This sexual dimorphism may explain sex differences in the hypothalamic-pituitary-adrenal axis function between female and male rats. Third, steroid effects on the astrocyte marker glial fibrillary acidic protein (GFAP) points to a complex regulatory mechanism. In an animal model of neurodegeneration (the Wobbler mouse) showing pronounced astrogliosis of the spinal cord, in vivo GC treatment down-regulated GFAP immunoreactivity, whereas the membrane-active steroid antioxidant U-74389F up-regulated this protein. It is likely that variations in GFAP protein expression affect spinal cord neurodegeneration in Wobbler mice. Fourth, an interaction between neurotrophins and GC is shown in the injured rat spinal cord. In this model, intensive GC treatment increases immunoreactive low affinity nerve growth factor (NGF) receptor in motoneuron processes. Because GC also increases immunoreactive NGF, this mechanism would support trophism and regeneration in damaged tissues. In conclusion, evidences show that some molecules regulated by adrenal steroids in neurons and glial cells are not only involved in physiological control, but additionally, may play important roles in neuropathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号