首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
《铸造技术》2016,(2):252-255
以大面积镁合金压铸模轮毂铸件微弧氧化表面处理为例,设计了镁合金微弧氧化表面处理技术生产线,研究了微弧氧化表面处理技术的成膜机理,以及工艺的参数对膜层质量的影响。结果表明,微弧氧化表面处理技术用于镁合金压铸模铸件表面处理效果较好,对大面积镁合金铸件表面处理有重要参考价值。  相似文献   

2.
负向电压对镁合金微弧氧化膜层的影响   总被引:2,自引:0,他引:2  
研究了负向电压对镁合金微弧氧化陶瓷膜层的表面形貌,厚度及相组成的影响,试验结果表明负向电压对膜层的质量影响很大,它能使膜层表面空隙率降低且光滑平整,并显著提高镁合金微弧氧化的膜层厚度,但同时负向电压的变化应控制在一定范围之内.经对微弧氧化试样的膜层进行SEM、XRD以及厚度的检测,分析了不同负向电压对镁合金微弧氧化膜层的影响,得到一组较为稳定的正负向电压参数,使得镁合金微弧氧化膜层的效果得到较好的提高.  相似文献   

3.
AZ91D压铸镁合金微弧氧化膜层的显微硬度分析   总被引:3,自引:0,他引:3  
为了研究压铸镁合金AZ91D微弧氧化膜层显微硬度,在三种溶液及不同电参数条件下制备了微弧氧化膜层,分析了脉冲频率、占空比、电压、溶液成分及其电导率等参数对膜层显微硬度的影响.试验结果表明,镁合金微弧氧化处理可使其表面硬度大幅提高.锆盐溶液处理膜层的显微硬度高,与膜层相组成中含有ZrO2陶瓷有关.电源脉冲频率、占空比、电压、处理时间参数的增加,都使镁合金微弧氧化膜层的显微硬度增加.在一定范围内增加溶液的电导率,可使膜层的显微硬度提高.  相似文献   

4.
AZ91D镁合金表面微弧氧化陶瓷膜微观结构与组成的研究   总被引:4,自引:0,他引:4  
采用自制的恒流非对称方波电源用微弧氧化法在AZ91D镁合金表面制备了耐腐蚀陶瓷膜,通过微观分析手段对微弧氧化膜的截面特征、元素成分分布及表面膜的相组成进行了分析,研究了微弧氧化工艺参数对膜层表面形貌、微观结构与组成等的影响.结果表明,提高电流密度会造成组织疏松微孔孔径增大;硅酸盐溶液中微弧氧化制得的陶瓷膜优于铝酸盐溶液.而且电解液中的离子可参与成膜反应,硅酸盐溶液体系镁合金微弧氧化陶瓷层主要由MgO和Mg_2SiO_4相组成,铝酸盐溶液体系微弧氧化膜层主要由MgAl_2O_4相组成.  相似文献   

5.
镁合金微弧氧化工艺参数研究   总被引:2,自引:2,他引:0  
镁合金是目前最轻的金属,它可以部分替代一些钢铁材料来实现材料的轻量化。而且镁合金具有比强度、比刚度较高,减震性、减噪性、加工性较好等优点,市场对它的需求量也越来越大。但是镁合金的电位很低,易与其他金属发生电偶腐蚀,利用微弧氧化可在镁合金表面制得一层综合性能较好、类似陶瓷层的一种膜层,可大大提高镁合金的耐蚀性、耐磨性及耐高温性,因此微弧氧化技术在镁合金表面处理上得到了较快发展。对此,首先介绍了微弧氧化机理的研究现状,总结了微弧氧化过程的几个主要阶段及其主要作用;其次,重点概述了影响镁合金微弧氧化陶瓷膜制备工艺的主要因素,特别是电参数、电解液及氧化时间等对膜层结构、形貌及性能的影响;最后提出目前镁合金微弧氧化工艺存在的几个主要问题,并对其解决办法及应用前景进行了展望。  相似文献   

6.
AZ31镁合金微弧-电泳复合膜层制备工艺及其耐蚀性   总被引:3,自引:0,他引:3  
基于镁合金弧氧化陶瓷层的截面与表面形貌特征,设计了微弧-电泳复合处理工艺,并简化了电泳工艺.耐酸、耐碱实验表明:在酸性腐蚀条件下,镁合金微弧氧化陶瓷层在1min内已被破坏,而微弧电泳复合膜层在65min后才开始破坏,且耐酸性随微弧氧化时间的延长而增强,在微弧氧化8min~12min后施行电泳,所得复合膜层可耐酸130min.在碱性条件下腐蚀7d,两种膜层表面无腐蚀迹象.  相似文献   

7.
AZ91D镁合金微弧氧化工艺参数的优化   总被引:4,自引:0,他引:4  
利用自制微弧氧化装置在硅酸盐体系中对AZ91D镁合金进行微弧氧化处理.采用4因素3水平正交试验,从考察膜层厚度、表面粗糙度和耐蚀性出发,确定了AZ91D镁合金在硅酸盐体系中的最佳工艺参数.结果表明:在最佳工艺条件下,微弧氧化膜呈多孔结构、孔径较小,裂纹较少,分布均匀,膜层较为致密;微弧氧化膜由MgO、Mg2SiO4、MgAl2O4和少量的SiO2组成;室温下,在质量分数为3.5%的NaCl中性溶液中浸泡168 h后,膜层表面未出现明显的点蚀现象,耐蚀性较镁合金基体有了很大提高.  相似文献   

8.
为了探讨通电时间对镁合金微弧氧化陶瓷层形成和生长过程的影响规律,利用高速相机记录微弧放电状态,采用扫描电子显微镜观察膜层表面形貌,借助电化学测试分析膜层表面阻值,根据电压变化曲线计算能量消耗。结果表明:随微弧氧化时间增加,镁合金表面微弧放电斑点由边缘逐渐扩展至整个表面,放电强度增大且数量增多;微弧氧化初期,样品表面有含氧元素的不规则颗粒生成,数量逐渐增多,直至起弧瞬间形成孔径小于0.2μm的放电微孔;随微弧氧化时间增加镁合金表面阻值增大,直至3.1×104Ω时出现明显微弧放电现象;镁合金微弧氧化各时间段所消耗能量逐渐升高,陶瓷层生长阶段能量消耗54.62 k J明显高于起弧阶段的7.98 k J。  相似文献   

9.
镁合金微弧氧化技术的研究进展   总被引:5,自引:5,他引:0  
结合国内外微弧氧化技术的研究成果,综述了成膜过程火花放电机理及陶瓷层的生长过程,总结了电解液组成、电源类型、工作模式、电参数以及基体材料等对微弧氧化膜性能的影响。根据近年来微弧氧化技术用于镁合金表面处理的发展状况,介绍并分析了几种封孔处理的优化方法,重点介绍了工艺更为简单的原位封孔技术。同时也对镁合金微弧氧化技术的发展趋势和应用前景进行了展望。  相似文献   

10.
镁合金微弧氧化陶瓷层表面的电泳成膜机理   总被引:2,自引:0,他引:2  
研究镁合金微弧氧化(PEO)陶瓷层表面的电泳成膜机理;分析工艺参数对复合膜层耐蚀性的影响.采用扫描电镜、示波器和盐雾试验机等分别研究复合膜层的表面和截面形貌、电泳过程中电流变化规律及腐蚀防护性能.结果表明:在电泳成膜过程中,微弧氧化陶瓷层微孔处被击穿,电泳回路产生电流,电泳漆带电粒子先在微孔处沉积,然后向周围移动并沉积,当电流降为0时,电泳过程结束.随着陶瓷层厚度和粗糙度的增加,陶瓷层被击穿时间延长,电泳漆粒子沉积时间缩短.微弧氧化陶瓷层的腐蚀速率是微弧氧化/电泳涂装复合膜层的6.286倍,说明镁合金微弧氧化陶瓷层经电泳处理后,其耐蚀性得到了显著的增强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号