首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recovering nitrogen and phosphorus through struvite (MgNH4PO4 6H2O) crystallization from swine wastewater has gained increasing interest. However, swine wastewater contains complex compositions, which may hinder the formation of struvite crystal and affect the purity of the precipitates by forming other insoluble minerals. In this work, experiments were carried out to evaluate struvite precipitation in the anaerobically digested swine wastewater, with dosing bittern as a low-cost magnesium source. Exceeded 90% phosphate removal and 23-29% ammonium reduction were obtained. FTIR, XRD and mass balance analysis were combined to analyze the species of precipitated minerals. Results showed that the precipitates were struvite, mixed with amorphous calcium phosphate (ACP) and brucite. The presence of Ca2+ diminished the percentage of struvite and gave rise to ACP formation. Controlling pH below 9.5 and bittern dosage above 1% (w/w) could inhibit ACP precipitation and harvest a highly pure struvite crystal product.  相似文献   

2.
Interest in phosphorus recovery from urine diverted from faeces has been growing recently. Phosphorus in urine can be precipitated out as struvite (MgNH4PO4 x 6H2O) with addition of magnesium salt under alkaline conditions. Struvite formation, however, should be more well understood for its practical application. We predicted the struvite formation with a development of a new equilibrium model. The model considered the formation of eight different kinds of precipitates, including struvite, with effects of ionic strength and temperature. In addition, experiments on struvite formation in urine were conducted for the model validation. The model prediction of struvite formation had good agreement with the experimental results. The optimum pH to form struvite was predicted to be 9.4-9.7. In order to precipitate 99% of phosphate in urine with 1.5 fold Mg concentration to PO4-P, the pH value was necessary to be more than 8.1 based on the model prediction.  相似文献   

3.
The performance of an ultra-compact biofilm reactor (UCBR) treating domestic wastewater (DWW) collected from a local water reclamation plant; and gradually shifting to a mono-type carbon source synthetic wastewater (SWW) combined with DDW (CWW) and finally SWW; was investigated in this study. The total COD concentrations of influent DWW and CWW/SWW were 413.6 ± 80.8 mg/L and 454.9 ± 51.3 mg/L, respectively. The UCBR was able to achieve average total COD removal efficiencies of 70 ± 10% and 80 ± 4% for DWW and SWW respectively. The total COD concentrations of the effluent of DWW and CWW/SWW were 122.5 ± 44.4 mg/L and 89.7 ± 10.3 mg/L, respectively. These observations suggested that heterotrophs in the UCBR system were able to better assimilate and remove carbon of mono-type SWW compared to diverse carbon sources such as DWW; although the influent soluble COD concentrations of the SWW were higher than those of the DWW. However, the effluent NH(4)(+)-N concentrations for both types of wastewater were rather similar, <3.0 mg/L; although the influent NH(4)(+)-N concentrations of the DWW were 1.5 times those of the SWW.  相似文献   

4.
Hydrogen-driven denitrification using the fiber membrane biofilm reactor (MBfR) was evaluated for consistent operation in tertiary wastewater treatment. The possibility of controlling the process rates, as well as biofilm parameters by supplying limited amounts of electron donor (hydrogen), was tested. Limiting the hydrogen supply proved to be efficient in controlling the biofilm growth and performance of the MBfR. Denitrification rates remained unchanged for both synthetic wastewater (SWW) and real municipal wastewater (MWW) effluent as well through the fluctuations in the substrate (NO3-N) concentration. The average denitrification rates were 0.50 (+/- 0.02) g NO3-N per day per m2 for SWW and 0.59 (+/- 0.04) g NO3-N per day per m2 for MWW. Biofilm density rather than thickness was the determining factor in substrate diffusion and biofilm sloughing, ultimately determining operating stability. Limited hydrogen supply assured constant volatile solids (VS) concentration in the biofilm. It was determined that VS/TS ratio higher than 0.25 assured stable biofilm operation. Decrease of VS/TS ratio below 0.25 led to shearing of the nonbiological outer layers of the biofilm. The values of chemical oxygen demand (COD), volatile suspended solids (VSS) and total suspended solids (TSS) in the final effluent were stable and well below wastewater effluent guidelines. Substitutions of bicarbonate with gaseous carbon dioxide as the carbon source did not affect denitrification rates despite lower than optimum pH conditions.  相似文献   

5.
The Woodman Point Wastewater Treatment Plant (WWTP) in Western Australia has experienced two separate problems causing avoidable maintenance costs: the build-up of massive struvite (MgNH4PO4. 6H2O) scaling downstream of the anaerobic digester and the formation of hydrogen sulfide (H2S) levels in the digester gas to levels that compromised gas engine operation and caused high operating costs on the gas scrubber. As both problems hang together with a chemical imbalance in the anaerobic digester, we decided to investigate whether both problems could be (feasibly and economically) addressed by a common solution (such as dosing of iron solutions to precipitate both sulfide and phosphate), or by using separate approaches. Laboratory results showed that, the hydrogen sulfide emission in digesters could be effectively and economically controlled by the addition of iron dosing. Slightly higher than the theoretical value of 1.5 mol of FeCl3 was required to precipitate 1 mol of dissolved sulfide inside the digester. Due to the high concentration of PO4(3-) in the digested sludge liquor, significantly higher iron is required for struvite precipitation. Iron dosing did not appear an economic solution for struvite control via iron phosphate formation. By taking advantage of the natural tendency of struvite formation in the digester liquid, it is possible to reduce the risk of struvite precipitation in and around the sludge-dewatering centrifuge by increasing the pH to precipitate struvite out before passing through the centrifuge. However, as the Mg2+/PO4(3-) molar ratio in digested sludge was low, by increasing the pH alone (using NaOH) the precipitation of PO4(3-) was limited by the amount of cations (Ca2+ and Mg2+) available in the sludge. Although this would reduce struvite precipitation in the centrifuge, it could not significantly reduce PO4(3-) recycling back to the plant. For long-term operation, maximum PO4(3-) reduction should be the ultimate aim to minimise PO4(3-) accumulation in the plant. Magnesium hydroxide liquid (MHL) was found to be the most cost-effective chemical to achieve this goal. It enhanced struvite precipitation from both, digested sludge and centrate to the point where more than 95% PO4(3-) reduction in the digested sludge was achieved.  相似文献   

6.
The biological kinetic processes for anaerobic digestion (AD) are integrated into a two phase subset of a three phase mixed weak acid/base chemistry kinetic model. The approach of characterising sewage sludge into carbohydrates, lipids and proteins, as is done in the International Water Association (IWA) AD model No 1 (ADM1), requires measurements that are not routinely available on sewage sludges. Instead, the sewage sludge is characterised with the COD, carbon, hydrogen, oxygen and nitrogen (CHON) composition and is formulated in mole units, based on conservation of C, N, O, H and COD. The model is calibrated and validated with data from laboratory mesophilic anaerobic digesters operating from 7 to 20 d sludge age and fed a sewage primary and humus sludge mixture. These digesters yielded COD mass balances between 107-109% and N mass balances between 91-99%, and hence the experimental data is accepted as reasonable. The sewage sludge COD is found to be 32-36% unbiodegradable (depending on the kinetic formulation selected for the hydrolysis process) and to have a C3.5H7O2N0.196 composition. For the selected hydrolysis kinetics of surface mediated reaction (Contois), with a single set of kinetic and stoichiometric constants, for all retention times good correlation is obtained between predicted and measured results for: (i) COD; (ii) free and saline ammonia (FSA); (iii) short chain fatty acids (SCFA); (iv) H2CO3 * alkalinity; (v) pH of the effluent stream; (vi) CO2; and (vii) CH4 gases in the gas stream. The measured composition of primary sludge from two local wastewater treatment plants ranged between C3.38H7O1.91 N0.21 and C3.91H7O2.04N0.16. The predicted composition based on mass balances is therefore within 5% of the average measured composition providing persuasive validation of the model.  相似文献   

7.
Process models used for activated sludge, anaerobic digestion and in general wastewater treatment plant process design and optimization have traditionally focused on important biokinetic conversions. There is a growing realization that abiotic processes occurring in the wastewater (i.e. 'solvent') have a fundamental effect on plant performance. These processes include weak acid-base reactions (ionization), spontaneous or chemical dose-induced precipitate formation and chemical redox conversions, which influence pH, gas transfer, and directly or indirectly the biokinetic processes themselves. There is a large amount of fundamental information available (from chemical and other disciplines), which, due to its complexity and its diverse sources (originating from many different water and process environments), cannot be readily used in wastewater process design as yet. This position paper outlines the need, the methods, available knowledge and the fundamental approaches that would help to focus the effort of research groups to develop a physicochemical framework specifically in support of whole-plant process modeling. The findings are that, in general, existing models such as produced by the International Water Association for biological processes are limited by omission of key corrections such as non-ideal acid-base behavior, as well as major processes (e.g., ion precipitation). While the underlying chemistry is well understood, its applicability to wastewater applications is less well known. This justifies important further research, with both experimental and model development activities to clarify an approach to modeling of physicochemical processes.  相似文献   

8.
This paper reports the results of laboratory studies on the removal of ammonium from aqueous solutions using struvite pyrogenation residues. A series of experiments were conducted to examine the effects of the pyrogenation temperature (90-210 °C) and time (0.5-4 h) on the ammonium release of struvite. In addition, the pyrolysate of struvite produced at different pyrogenation temperatures and times was recycled for ammonium removal from aqueous solutions. The experimental results indicated that the ammonium release ratio of struvite increased with an increase in the pyrogenation temperature and time, and the struvite pyrolysate used as magnesium and phosphate source for ammonium removal was produced at the optimal condition of pyrogenation temperature of 150 °C for 1 h. Furthermore, experimental results showed that the optimum pH and pyrolysate dosage for ammonium removal from 100 ml synthetic wastewater (1,350 mg ammonium/L) were at pH 9 and 2.4 g of struvite pyrolysate, respectively, and initial ammonium concentration played a significant role in the ammonium removal by the struvite pyrolysate. In order to further reduce the cost of struvite precipitation, the struvite pyrolysate was repeatedly used for four cycles. The results of economic analysis showed that recycling struvite for three process cycles should be reasonable for ammonium removal, with ammonium removal efficiencies of over 50% and a reduction of 40% in the removal cost per kg NH(4)(+).  相似文献   

9.
采用SBR工艺,按照短时进水—厌氧—曝气—缺氧—沉淀—排水—闲置的运行方式对某校园废水进行了单因素试验及正交试验,确定最佳运行模式为厌氧80 min—曝气4 h—缺氧1 h—沉淀0.5 h,该运行模式下CODCr、NH3-N及TP的去除率分别为90.12%5、5.16%、92.45%,较原来传统SBR运行模式得到很大改善。  相似文献   

10.
根据前期的实验结果对转笼生物反应器运行影响因素进行了分析,发现其污水处理率主要与转笼转速、曝气量、污水流速、浸没量等因素有关。为了得到较优的运行参数,采用混合正交实验方案进行测试,实验结果表明:在转笼转速为1.5 r/min、曝气量为2 m3/h、污水流速1 m3/h、转笼完全浸没、平均水力停留时间为80.5min条件下,COD和NH3-N的去除率分别达到82.18%和81.62%,为转笼生物反应器的实际应用提供参考。  相似文献   

11.
Recovery of phosphate as struvite (MgNH4PO4.6H2O), before it forms and accumulates on wastewater treatment equipment, solves wastewater treatment problems and also provides environmentally sustainable, renewable nutrient source for the agriculture sector. A pilot-scale fluidized bed reactor was used to recover phosphate through crystallization of struvite, from anaerobic digester centrate at the Lulu Island Wastewater Treatment Plant, Richmond, British Columbia, Canada. The desired degree of phosphate removal was achieved by maintaining operating pH (8.0-8.2), and recycle ratio 5-9, to control the supersaturation conditions inside the reactor. The performance of the system was found to be optimal when in-reactor supersaturation ratio was 2-6. Among several other operating parameters, apparent upflow velocity and magnesium to phosphate molar ratio were also found important to maintain system performance, both in terms of efficiency of phosphate removal and recovery as struvite pellets. A narrow window of upflow velocity (400-410 cm/min) was found to be effective in removing 75-85% phosphate. TOC level inside the rector was found to affect the performance to some extent. The precipitation potential of struvite could be successfully predicted using a thermodynamic solubility product value of 10(-13.36) and its temperature dependence in PHREEQC.  相似文献   

12.
Three full-scale municipal sequential batch reactor (SBR) wastewater treatment plants (WWTPs) were investigated by dynamic simulation studies using ASM1. All three WWTPs showed similar kinetic and stoichiometric conditions in the SBR population behaviour after calibration of the models. The simulation results detected only a discrepancy to the ammonia online data during and shortly after shock loading under anoxic and anaerobic conditions that so far could not be adjusted by the ASM1 model. However, these differences did not severely affect the quality of the simulations nor the effluent flows. Additionally, in all cases a dynamic alpha factor curve occurred during the aeration phases that was verified by further oxygen transfer measurements. This might reveal new aspects for the process control, design and simulation of SBR WWTPs. A short lag phase was detected in many cases at the beginning of the first aeration phase.  相似文献   

13.
Aerobic biological treatment of digested sludge was studied in a continuously operated laboratory set-up. An aerated reactor was filled with thermophilically digested sludge from the Moscow wastewater treatment plant and inoculated with special activated sludge. It was then operated at the chemostat mode at different flow rates. Processes of nitrification and denitrification, as well as dephosphatation, occurred simultaneously during biological aerobic treatment of thermophilically digested sludge. Under optimal conditions, organic matter degradation was 9.6%, the concentrations of ammonium nitrogen and phosphate decreased by 89 and 83%, respectively, while COD decreased by 12%. Dewaterability of digested sludge improved significantly. The processes were found to depend on hydraulic retention time, oxygen regime, and temperature. The optimal conditions were as follows: hydraulic retention time 3-4 days, temperature 30-35 degrees C, dissolved oxygen levels 0.2-0.5 mg/L at continuous aeration or 0.7-1 mg/L at intermittent aeration. Based on these findings, we propose a new combined technology of wastewater sludge treatment. The technology combines two stages: anaerobic digestion followed by aerobic biological treatment of digested sludge. The proposed technology makes it possible to degrade the sludge with conversion of approximately 45% volatile suspended solids to biogas, to improve nitrogen and phosphorus removal in reject water from sludge treatment units, and to achieve removal of malodorous substances after 8-9 days of anaerobic-aerobic sludge treatment.  相似文献   

14.
The ADM 1 model has been implemented in a steady-state whole wastewater plant simulator. The ADM 1 model has been in use with good success for approximately 2 years on a wide range of wastewater treatment facilities. However, a number of modifications were necessary to allow it to be used in the context of municipal wastewater treatment. It was found that the model's use was greatly simplified if used in conjunction with a larger plant simulator to assist in the feed fractionation. It was also found that a better fit to actual operating data was achieved if some of the slowly biodegradable particulate fraction was partitioned into ADM particulate fractions other than the composite fraction. Another significant limitation of the model is in the absence of phosphorus modeling. The ADM model needs to have phosphorus handling for all the relevant fractions, and needs to include the handling of inorganic reactions such as struvite precipitation and metal phosphate/metal hydroxide precipitation. Activity effects on chemical equilibria are significant when considering phosphorus. Also of importance in wastewater treatment is the fate of sulfur compounds. This includes the generation of H2S in the digester gas and the fate of the sulfur species in the digested sludge (as a predictor of odour-generating potential).  相似文献   

15.
Precipitation of ammonium together with phosphate and magnesium is a possible alternative for lowering the nitrogen content of wastewater. In this study we examine the removal of ammonium nitrogen and phosphorus from slurry-type swine wastewater containing high concentrations of nutrients by the addition of phosphoric acid along with either calcium oxide or magnesium oxide, which leads to the crystallization of insoluble salts such as hydroxyapatite and struvite. The struvite crystallization method showed a high capacity for the removal of nitrogen when magnesium oxide and phosphoric acid were used as the magnesium and phosphate sources, respectively. When it was applied to swine wastewater containing a high concentration of nitrogen, the injection molar ratio of Mg2+:NH4+:PO4(3-) that gave maximum ammonium nitrogen removal was 3.0:1.0:1.5.  相似文献   

16.
To supply theoretical verification of the function of a selector to control aerobic activated sludge bulking in the wastewater treatment plant for a chemical fiber factory in Taiwan, the filamentous and floc-forming bacteria in the aeration tank in the full-scale plant were examined microscopically and isolated. The kinetic characteristics of filamentous and floc-forming bacteria were also investigated.The predominant filamentous organism was Sphaerotilus natans. In addition to this organism, 21 strains of non-filamentous bacteria were isolated using the plate count method. These included Aeromonas jandaei DNA group 9, Acinetobacter johnsonii/genospecies 7, Bacillus pasteurii and Bacillus sp. (using the Biolog identification system). Nine strains showed the ability to form flocs when cultivated in glucose mineral salts medium.With glucose and acetate as sole substrates, the 4 floc-forming bacteria tested showed different substrate utilization characteristics. The 4 strains could be divided into 3 groups. The first group was the substrate degrading bacteria, the second group was the acid degrading bacteria and the other strains were those that had the highest substrate degradation rates at low substrate concentrations (below 800 mg/l). None of the floc-formers could utilize ethylene glycol, which is the major wastewater component. The kinetic characteristics of filamentous bacterium S. natans (Km = 4.0 mg glucose/l, Vm = 0.43 μl O2/l) and the flocforming bacterium Aeromonas jandaei DNA group 9 (Km = 34.8 mg glucose/l, Vm = 0.59 μl O2/l) provided information for selector design.  相似文献   

17.
Phosphorus recovery as struvite from eutropic waters by XDA-7 resin   总被引:1,自引:0,他引:1  
Li H  Ye Z  Lin Y  Wang F 《Water science and technology》2012,65(12):2091-2097
Phosphorus releases into aquatic environment and its subsequent contribution to eutrophication have resulted in a widespread global pollution issue. However, phosphorus is a non-renewable source. The potential supplies of phosphorus are decreasing worldwide. Therefore, removal and recovery of phosphorus from the eutropic waters is important, emergent and necessary. In this research, experiments for recovering phosphate from eutropic waters by anion exchange combined with struvite precipitation were conducted. The results indicated that the prepared XDA-7 resin was an effective adsorbent for phosphate. The adsorption isotherm of XDA-7 resin was found to be a modified Freundlich type. The maximum phosphate adsorption (20.9 mg/g) occurred in the pH range of 6.0-8.0. Phosphate adsorbed on the XDA-7 resin was effectively desorbed with 8% NaCl solution, and the resin was able to be regenerated with 3% NaClO and 4% NaOH solutions. Phosphate desorbed from the resin was recovered as magnesium ammonium phosphate (struvite). The obtained struvite was analyzed by acid dissolution method, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The struvite precipitate was found to be 75.8% in purity, a high-value fertilizer.  相似文献   

18.
In this paper, struvite (MgNH(4)PO(4).6H(2)O) precipitation kinetics were studied with different operating conditions (varying supersaturation, pH, Mg:P ratio, degree of mixing and seeding conditions) and relevant rate constants were determined by fitting a slightly modified first-order kinetic model to the experimental data obtained. The rate of change of ortho-P concentration in the bulk solutions increases with increasing supersaturation ratio. The estimated rate constants are 2.034, 1.716 and 0.690 hr(-1) for the supersaturation ratio of 9.64, 4.83, and 2.44, respectively. Kinetic parameters were also evaluated for the Mg:P ratio between the ranges of 1.0 and 1.6, indicating higher phosphorus removal efficiency with increasing Mg:P ratio. The rate constants were found to be 0.942, 2.034 and 2.712 hr(-1) for Mg:P ratios of 1.0, 1.3 and 1.6, respectively. The experimental observations for kinetic study of struvite precipitation with different stirrer speeds clearly show that the mixing intensity used had little effect on the intrinsic rate constants. K values found to be 2.034 and 1.902 h(-1) for 100 and 70 rpm, respectively. Seeding, with 250-500 microm of seed crystals during the struvite precipitation kinetics test, was found to have very little effect on the ortho-P removal.  相似文献   

19.
采用预处理-加压曝气生物氧化工艺处理香兰素生产废水。反应器在200 kPa压力条件下,COD容积负荷率达5.5~8.0 kg/m3.d,进水COD质量浓度为2 000~2 500 mg/L,反应时间为8~10 h时,处理后的出水COD质量浓度小于100 mg/L,达到污水综合排放一级标准。还对加压曝气生物反应器原理、工艺流程、运行参数、工艺设计等方面进行了介绍。  相似文献   

20.
A novel hybrid respirometric principle is proposed that is particularly suited to sludge and wastewater characterisation in the context of activated sludge process models. Advantages of two respirometric principles are combined and their disadvantages eliminated to increase measuring frequency and precision. Emphasis is put on decreasing the bias in parameter estimates that results from the use of unreliable sensor constants in the calculation of respiration rates. To this end checks for dissolved oxygen probes, aeration systems and pumps are built into the respirometer's operation. Checks are to be run while the respirometric batch experiment is conducted so that between-experiment variation is eliminated and within-experiment variation is minimised. It is also stressed that a combined sensor/process model should be used to estimate the process parameters rather than a sequential procedure in which the sensor constants are first used to calculate respiration rates, that are subsequently used for sludge and wastewater characterisation. Finally, three possible practical implementations of the new principle are discussed in relation to maximising parameter estimation accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号