首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Overlay multicast for MANETs using dynamic virtual mesh   总被引:1,自引:0,他引:1  
Overlay multicast protocol builds a virtual mesh spanning all member nodes of a multicast group. It employs standard unicast routing and forwarding to fulfill multicast functionality. The advantages of this approach are robustness and low overhead. However, efficiency is an issue since the generated multicast trees are normally not optimized in terms of total link cost and data delivery delay. In this paper, we propose an efficient overlay multicast protocol to tackle this problem in MANET environment. The virtual topology gradually adapts to the changes in underlying network topology in a fully distributed manner. To save control overhead, the participating nodes only keep a fisheye view of the dynamic mesh. The multicast tree is progressively adjusted according to the latest local topology information. Simulations are conducted to evaluate the tree quality. The results show that our approach solves the efficiency problem effectively. This research was supported in part by the National Science Foundation under the grants CCR-0296070 and ANI-0296034. The preliminary results of this work is presented in “Efficient Overlay Multicast in Mobile Ad Hoc Networks,” Proc. IEEE WCNC 2003. Chao Gui is a Technical Research Staff at Kiyon Inc (www.kiyon.com). His research interests include wireless networking and mobile computing. His current efforts are on industrial implementation of wireless mesh networks and embedded systems. Dr. Gui has received Ph.D. in Computer Science from University of California at Davis in 2005. Prasant Mohapatra is currently a Professor in the Department of Computer Science at the University of California, Davis. He has also held various positions at Iowa State University, Michigan State University, Intel Corporation, Panasonic Technologies, Institute of Infocomm Research, Singapore, and the National ICT, Australia. Dr. Mohapatra received his Ph.D. in Computer Engineering from the Pennsylvania State University in 1993. He was/is on the editorial boards of the IEEE Transactions on computers, ACM/Springer WINET, and Ad hoc Networks Journal. He has served on numerous technical program committees for international conferences, and served on several panels. He was the Program Vice-Chair of INFOCOM 2004, and the Program Co-Chair of the First IEEE International Conference on Sensor and Ad Hoc Communications and Networks, (SECON-2004). Dr. Mohapatra’s research interests are in the areas of wireless networks, sensor networks, Internet protocols and QoS.  相似文献   

2.
To achieve high throughput in wireless networks, smart forwarding and processing of packets in access routers is critical for overcoming the effects of the wireless links. However, these services cannot be provided if data sessions are protected using end-to-end encryption as with IPsec, because the information needed by these algorithms resides inside the portion of the packet that is encrypted, and can therefore not be used by the access routers. A previously proposed protocol, called Multi-layered IPsec (ML-IPsec) modifies IPsec in a way so that certain portions of the datagram may be exposed to intermediate network elements, enabling these elements to provide performance enhancements. In this paper we extend ML-IPsec to deal with mobility and make it suitable for wireless networks. We define and implement an efficient key distribution protocol to enable fast ML-IPsec session initialization, and two mobility protocols that are compatible with Mobile IP and maintain ML-IPsec sessions. Our measurements show that, depending on the mobility protocol chosen, integrated Mobile IP/ML-IPsec handoffs result in a pause of 53–100 milliseconds, of which only 28–75 milliseconds may be attributed to ML-IPsec. Further, we provide detailed discussion and performance measurements of our MML-IPsec implementation. We find the resulting protocol, when coupled with SNOOP, greatly increases throughput over scenarios using standard TCP over IPsec (165% on average). By profiling the MML-IPsec implementation, we determine the bottleneck to be sending packets over the wireless link. In addition, we propose and implement an extension to MML-IPsec, called dynamic MML-IPsec, in which a flow may switch between plaintext, IPsec and MML-IPsec. Using dynamic MML-IPsec, we can balance the tradeoff between performance and security. Heesook Choi is a Ph.D. candidate in the Department of Computer Science and Engineering at the Pennsylvania State University. She received her B.S. degree in Computer Science and Statistics and M.S. degree in Computer Science from the Chungnam National University, Korea, in 1990 and 1992 respectively. She was a senior research staff in Electronics and Telecommunications Research Institute (ETRI) in Korea before she enrolled in the Ph.D. program at the Pennsylvania State University in August 2002. Her research interests lie in security and privacy in distributed systems and wireless mobile networks, focusing on designing algorithms and conducting system research. Hui Song is a Ph.D. candidate in the Department of Computer Science and Engineering at the Pennsylvania State University, University Park. He received the M.E. degree in Computer Science from Tsinghua University, China in 2000. His research interests are in the areas of network and system security, wireless ad-hoc and sensor networks, and mobile computing. He was a recipient of the research assistant award of the Department of Computer Science and Engineering at the Pennsylvania State University in 2005. Guohong Cao received his BS degree from Xian Jiaotong University, Xian, China. He received the MS degree and Ph.D. degree in computer science from the Ohio State University in 1997 and 1999 respectively. Since then, he has been with the Department of Computer Science and Engineering at the Pennsylvania State University, where he is currently an Associate Professor. His research interests are wireless networks and mobile computing. He has published over one hundred papers in the areas of sensor networks, wireless network security, data dissemination, resource management, and distributed fault-tolerant computing. He is an editor of the IEEE Transactions on Mobile Computing and IEEE Transactions on Wireless Communications, a guest editor of special issue on heterogeneous wireless networks in ACM/Kluwer Mobile Networking and Applications, and has served on the program committee of many conferences. He was a recipient of the NSF CAREER award in 2001. Thomas F. La Porta received his B.S.E.E. and M.S.E.E. degrees from The Cooper Union, New York, NY, and his Ph.D. degree in Electrical Engineering from Columbia University, New York, NY. He joined the Computer Science and Engineering Department at Penn State in 2002 as a Full Professor. He is the Director of the Networking and Security Research Center at Penn State. Prior to joining Penn State, Dr. La Porta was with Bell Laboratories since 1986. He was the Director of the Mobile Networking Research Department in Bell Laboratories, Lucent Technologies where he led various projects in wireless and mobile networking. He is a Bell Labs Fellow. Dr. La Porta was the founding Editor-in-Chief of the IEEE Transactions on Mobile Computing and served as Editor-in-Chief of IEEE Personal Communications Magazine. He is currently the Director of Magazines for the IEEE Communications Society and is a member of the Communications Society Board of Governors. He has published over 50 technical papers and holds 28 patents. His research interests include mobility management, signaling and control for wireless networks, mobile data systems, and protocol design.  相似文献   

3.
In order to support the diverse Quality of Service (QoS) requirements for differentiated data applications in broadband wireless networks, advanced techniques such as space-time coding (STC) and orthogonal frequency division multiplexing (OFDM) are implemented at the physical layer. However, the employment of such techniques evidently affects the subchannel-allocation algorithms at the medium access control (MAC) layer. In this paper, we propose the QoS-driven cross-layer subchannel-allocation algorithms for data transmissions over asynchronous uplink space-time OFDM-CDMA wireless networks. We mainly focus on QoS requirements of maximizing the best-effort throughput and proportional bandwidth fairness, while minimizing the upper-bound of scheduling delay. Our extensive simulations show that the proposed infrastructure and algorithms can achieve high bandwidth fairness and system throughput while reducing scheduling delay over wireless networks. Xi Zhang (S’89-SM’98) received the B.S. and M.S. degrees from Xidian University, Xi’an, China, the M.S. degree from Lehigh University, Bethlehem, PA, all in electrical engineering and computer science, and the Ph.D. degree in electrical engineering and computer science (Electrical Engineering—Systems) from The University of Michigan, Ann Arbor, USA. He is currently an Assistant Professor and the Founding Director of the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA. He was an Assistant Professor and the Founding Director of the Division of Computer Systems Engineering, Department of Electrical Engineering and Computer Science, Beijing Information Technology Engineering Institute, Beijing, China, from 1984 to 1989. He was a Research Fellow with the School of Electrical Engineering, University of Technology, Sydney, Australia, and the Department of Electrical and Computer Engineering, James Cook University, Queensland, Australia, under a Fellowship from the Chinese National Commission of Education. He worked as a Summer Intern with the Networks and Distributed Systems Research Department, Bell Laboratories, Murray Hills, NJ, and with AT&T Laboratories Research, Florham Park, NJ, in 1997. He has published more than 80 technical papers. His current research interests focus on the areas of wireless networks and communications, mobile computing, cross-layer designs and optimizations for QoS guarantees over mobile wireless networks, wireless sensor and Ad Hoc networks, wireless and wireline network security, network protocols design and modeling for QoS guarantees over multicast (and unicast) wireless (and wireline) networks, statistical communications theory, random signal processing, and distributed computer-control systems. Dr. Zhang received the U.S. National Science Foundation CAREER Award in 2004 for his research in the areas of mobile wireless and multicast networking and systems. He is currently serving as an Editor for the IEEE Transactions on Wireless Communications, an Associated Editor for the IEEE Transactions on Vehicular Technology, and and Associated Editor for the IEEE Communications Letters, and is also currently serving as a Guest Editor for the IEEE Wireless Communications Magazine for the Special Issues of “Next Generation of CDMA vs. OFDMA for 4G Wireless Applications”. He has served or is serving as the Panelist on the U.S. National Science Foundation Research-Proposal Review Panel in 2004, the WiFi-Hotspots/WLAN and QoS Panelist at the IEEE QShine 2004, as the Symposium Chair for the IEEE International Cross-Layer Designs and Protocols Symposium within the IEEE International Wireless Communications and Mobile Computing Conference (IWCMC) 2006, the Technical Program Committee Co-Chair for the IEEE IWCMC 2006, the Poster Chair for the IEEE QShine 2006, the Publicity Co-Chair for the IEEE WirelessCom 2005, and as the Technical Program Committee members for IEEE GLOBECOM, IEEE ICC, IEEE WCNC, IEEE VTC, IEEE QShine, IEEE WoWMoM, IEEE WirelessCom, and IEEE EIT. He is a Senior Member of the IEEE and a member of the Association for Computing Machinery (ACM). Jia Tang (S’03) received the B.S. degree in electrical engineering from Xi’an Jiaotong University, Xi’an, China, in 2001. He is currently a Research Assistant working towards the Ph.D. degree in the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA. His research interests include mobile wireless communications and networks, with emphasis on cross-layer design and optimizations, wireless quality-of-service (QoS) provisioning for mobile multimedia networks, wireless diversity techniques, and wireless resource allocation. Mr. Tang received the Fouraker Graduate Research Fellowship Award from the Department of Electrical and Computer Engineering, Texas A&M University in 2005.  相似文献   

4.
5.
We analyze an architecture based on mobility to address the problem of energy efficient data collection in a sensor network. Our approach exploits mobile nodes present in the sensor field as forwarding agents. As a mobile node moves in close proximity to sensors, data is transferred to the mobile node for later depositing at the destination. We present an analytical model to understand the key performance metrics such as data transfer, latency to the destination, and power. Parameters for our model include: sensor buffer size, data generation rate, radio characteristics, and mobility patterns of mobile nodes. Through simulation we verify our model and show that our approach can provide substantial savings in energy as compared to the traditional ad-hoc network approach. Sushant Jain is a Ph.D. candidate in the Department of Computer Science and Engineering at the University of Washington. His research interests are in design and analysis of routing algorithms for networking systems. He received a MS in Computer Science from the University of Washington in 2001 and a B.Tech degree in Computer Science from IIT Delhi in 1999. Rahul C. Shah completed the B. Tech (Hons) degree from the Indian Institute of Technology, Kharagpur in 1999 majoring in Electronics and Electrical Communication Engineering. He is currently pursuing his Ph.D. in Electrical Engineering at the University of California, Berkeley. His research interests are in energy-efficient protocol design for wireless sensor/ad hoc networks, design methodology for protocols and next generation cellular networks. Waylon Brunette is a Research Engineer in the Department of Computer Science and Engineering at the University of Washington. His research interests include mobile and ubiquitous computing, wireless sensor networks, and personal area networks. Currently, he is engaged in collaborative work with Intel Research Seattle to develop new uses for embedded devices and RFID technologies in ubiquitous computing. He received a BS in Computer Engineering from the University of Washington in 2002. Gaetano Borriello is a Professor in the Department of Computer Science and Engineering at the University of Washington. His research interests are in embedded and ubiquitous computing, principally new hardware devices that integrate seamlessly into the user’s environment with particular focus on location and identification systems. His principal projects are in creating manageable RFID systems that are sensitive to user privacy concerns and in context-awareness through sensors distributed in the environment as well as carried by users. Sumit Roy received the B. Tech. degree from the Indian Institute of Technology (Kanpur) in 1983, and the M. S. and Ph. D. degrees from the University of California (Santa Barbara), all in Electrical Engineering in 1985 and 1988 respectively, as well as an M. A. in Statistics and Applied Probability in 1988. His previous academic appointments were at the Moore School of Electrical Engineering, University of Pennsylvania, and at the University of Texas, San Antonio. He is presently Prof, of Electrical Engineering, Univ. of Washington where his research interests center around analysis/design of communication systems/networks, with a topical emphasis on next generation mobile/wireless networks. He is currently on academic leave at Intel Wireless Technology Lab working on high speed UWB radios and next generation Wireless LANs. His activities for the IEEE Communications Society includes membership of several technical committees and TPC for conferences, and he serves as an Editor for the IEEE Transactions on Wireless Communications.  相似文献   

6.
One of the most important and challenging issues in the design of personal communication service (PCS) systems is the management of location information. In this paper, we propose a new fault-tolerant location management scheme, which is based on the cellular quorum system. Due to quorum's salient set property, our scheme can tolerate the failures of one or more location server(s) without adding or changing the hardware of the systems in the two-tier networks. Meanwhile, with a region-based approach, our scheme stores/retrieves the MH location information in the location servers of a quorum set of the local region as much as possible to avoid long delays caused by the possible long-distance of VLR and HLR. Thus, it yields better connection establishment and update delay. Ming-Jeng Yang received the M.S. degree in computer science from the Syracuse University, New York, in 1991, and the Ph.D. degree in computer science from National Taiwan Normal University, Taiwan, in 2004. He is an associate professor in the Department of Information Technology, Takming College, Taiwan. His research interests include wireless networks, mobile computing, fault-tolerant computing, and distributed computing. He is a member of the IEEE Computer Society and the ACM. Yao-Ming Yeh received the B.S. degree in computer engineering from National Chiao-Tung University, Taiwan, in 1981, and the M.S. degree in computer science and information engineering from National Taiwan University, Taiwan, in 1983. In August 1991, he received the Ph.D. degree in the Department of Electrical and Computer Engineering, The Pennsylvania State University, Pa., U.S.A. He is a professor in the Department of Information and Computer Education, National Taiwan Normal University, Taiwan. His research interests include fault-tolerant computing, web and XML computing, and distributed computing.  相似文献   

7.
In this paper, we study rate allocation for a set of end-to-end communication sessions in multi-radio wireless mesh networks. We propose cross-layer schemes to solve the joint rate allocation, routing, scheduling, power control and channel assignment problems with the goals of maximizing network throughput and achieving certain fairness. Fairness is addressed using both a simplified max-min fairness model and the well-known proportional fairness model. Our schemes can also offer performance upper bounds such as an upper bound on the maximum throughput. Numerical results show that our proportional fair rate allocation scheme achieves a good tradeoff between throughput and fairness. Jian Tang is an assistant professor in the Department of Computer Science at Montana State University. He received the Ph.D. degree in Computer Science from Arizona State University in 2006. His research interest is in the area of wireless networking and mobile computing. He has served on the technical program committees of multiple international conferences, including ICC, Globecom, IPCCC and QShine. He will also serve as a publicity co-chair of International Conference on Autonomic Computing and Communication Systems (Autonomics’2007). Guoliang Xue is a Full Professor in the Department of Computer Science and Engineering at Arizona State University. He received the Ph.D. degree in Computer Science from the University of Minnesota in 1991 and has held previous positions at the Army High Performance Computing Research Center and the University of Vermont. His research interests include efficient algorithms for optimization problems in networking, with applications to fault tolerance, robustness, and privacy issues in networks ranging from WDM optical networks to wireless ad hoc and sensor networks. He has published over 150 papers in these areas. His research has been continuously supported by federal agencies including NSF and ARO. He is the recipient of an NSF Research Initiation Award in 1994 and an NSF-ITR Award in 2003. He is an Associate Editor of Computer Networks (COMNET), the IEEE Network Magazine, and Journal of Global Optimization. He has served on the executive/program committees of many IEEE conferences, including INFOCOM, SECON, IWQOS, ICC, GLOBECOM and QShine. He is the General Chair of IEEE IPCCC’2005, a TPC co-Chair of IPCCC’2003, HPSR’2004, IEEE Globecom’2006 Symposium on Wireless Ad Hoc and Sensor Networks, IEEE ICC’2007 Symposium on Wireless Ad Hoc and Sensor Networks, and QShine’2007. He is a senior member of IEEE. Weiyi Zhang received the M.E. degree in 1999 from Southeast University, China. Currently he is a Ph.D. student in the Department of Computer Science and Engineering at Arizona State University. His research interests include reliable communication in networking, protection and restoration in WDM networks, and QoS provisioning in communication networks.  相似文献   

8.
In mobile computing environments, vital resources like battery power and wireless channel bandwidth impose significant challenges in ubiquitous information access. In this paper, we propose a novel energy and bandwidth efficient data caching mechanism, called GreedyDual Least Utility (GD-LU), that enhances dynamic data availability while maintaining consistency. The proposed utility-based caching mechanism considers several characteristics of mobile distributed systems, such as connection-disconnection, mobility handoff, data update and user request patterns to achieve significant energy savings in mobile devices. We develop an analytical model for energy consumption of mobile devices in a dynamic data environment. Based on the utility function derived from the analytical model, we propose algorithms for cache replacement and passive prefetching of data objects. Our comprehensive simulation experiments demonstrate that the proposed caching mechanism achieves more than 10% energy saving and near-optimal performance tradeoff between access latency and energy consumption. Huaping Shen received his M.S. and B.S. degrees in computer science from Fudan University, China, in 2001 and 1998, respectively. He is currently a Ph.D. student in the Department of Computer Science and Engineering at the University of Texas at Arlington. His research interests include data management in mobile networks, mobile computing, peer-to-peer networks, and pervasive computing. Mohan Kumar is an Associate Professor in Computer Science and Engineering at the University of Texas at Arlington. His current research interests are in pervasive computing, wireless networks and mobility, active networks, mobile agents, and distributed computing. Recently, he has developed or co-developed algorithms for active-network based routing and multicasting in wireless networks and caching prefetching in mobile distributed computing. He has published over 90 articles in refereed journals and conference proceedings and supervised Masters and doctoral theses in the areas of pervasive computing, caching/prefetching, active networks, wireless networks and mobility, and scheduling in distributed systems. Kumar is on the editorial board of The Computer Journal and he has guest edited special issues of several leading international journals including MONET and WINET issues and the IEEE Transactions on Computers. He is a co-founder of the IEEE International Conference on pervasive computing and communications (PerCom)—served as the program chair for PerCom 2003, and is the vice general chair for PerCom 2004. He has also served in the technical program committees of numerous international conferences/workshops. He is a senior member of the IEEE. Mohan Kumar obtained his PhD (1992) and MTech (1985) degrees from the Indian Institute of Science and the BE (1982) from Bangalore University in India. Prior to joining The University of Texas at Arlington in 2001, he held faculty positions at the Curtin University of Technology, Perth, Australia (1992–2000), The Indian Institute of Science (1986-1992), and Bangalore University (1985–1986). Dr. Sajal K. Das is currently a Professor of Computer Science and Engineering and also the Founding Director of the Center for Research in Wireless Mobility and Networking (CReWMaN) at the University of Texas at Arlington (UTA). Prior to 1999, he was a professor of Computer Science at the University of North Texas (UNT), Denton where he founded the Center for Research in Wireless Computing (CReW) in 1997, and also served as the Director of the Center for Research in Parallel and Distributed Computing (CRPDC) during 1995–97. Dr. Das is a recipient of the UNT Student Association’s Honor Professor Award in 1991 and 1997 for best teaching and scholarly research; UNT’s Developing Scholars Award in 1996 for outstanding research; UTA’s Outstanding Faculty Research Award in Computer Science in 2001 and 2003; and the UTA College of Engineering Research Excellence Award in 2003. An internationally-known computer scientist, he has visited numerous universities, research organizations, government and industry labs worldwide for collaborative research and invited seminar talks. He is also frequently invited as a keynote speaker at international conferences and symposia.Dr. Das’ current research interests include resource and mobility management in wireless networks, mobile and pervasive computing, wireless multimedia and QoS provisioning, sensor networks, mobile internet architectures and protocols, parallel processing, grid computing, performance modeling and simulation. He has published over 250 research papers in these areas, directed numerous industry and government funded projects, and holds four US patents in wireless mobile networks. He received the Best Paper Awards in the 5th Annual ACM International Conference on Mobile Computing and Networking (MobiCom’99), 16th International Conference on Information Networking (ICOIN-16), 3rd ACM International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2000), and 11th ACM/IEEE International Workshop on Parallel and Distributed Simulation (PADS’97). Dr. Das serves on the Editorial Boards of IEEE Transactions on Mobile Computing, ACM/Kluwer Wireless Networks, Parallel Processing Letters, Journal of Parallel Algorithms and Applications. He served as General Chair of IEEE PerCom 2004, MASCOTS’02 ACM WoWMoM 2000-02; General Vice Chair of IEEE PerCom 2003, ACM MobiCom-2000 and IEEE HiPC 2000-01; Program Chair of IWDC 2002, WoWMoM 1998-99; TPC Vice Chair of ICPADS 2002; and as TPC member of numerous IEEE and ACM conferences. He is Vice Chair of the IEEE TCPP and TCCC Executive Committees and on the Advisory Boards of several cutting-edge companies.Dr. Sajal K. Das received B.S. degree in 1983 from Calcutta University, M.S. degree in 1984 from Indian Institute of Science, Bangalore, and Ph.D. degree in 1988 from the University of Central Florida, Orlando, all in Computer Science. Zhijun Wang received the M.S degree in Electrical Engineering from Pennsylvania State University, University Park, PA, 2001. He is working toward the Ph.D. degree in Computer Science and Engineering Department at the University of Texas at Arlington. His current research interests include data management in mobile networks and peer-to-peer networks, mobile computing and networking processors.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

9.
In this paper, we propose an OSA-based development environment for interworking WLAN and 3G cellular networks. The main goal of our work is to establish and create an environment that can serve as a demonstration of a working network for OSA-based application developers while featuring mobile services over the interworked LAN and 3G cellular networks. The proposed simulating environment has (i) a location update scheme that is used to obtain mobile users' locations and status information over the interworked WLAN and cellular networks, (ii) an instant message gateway (IMG) simulator that is developed to send and receive generic messages over the interworked WLAN and cellular networks, and (iii) a mapping of Parlay APIs onto SIP signaling messages for multiparty call applications over the interworked WLAN and cellular networks. An illustrated OSA-based application that utilizes the corresponding system functions and modules is developed and verified using the proposed simulating environment. Chung-Ming Huang received the B.S. degree in Electrical Engineering from National Taiwan University on 1984/6, and the M.S. and Ph.D. degrees in Computer and Information Science from The Ohio State University on 1987/12 and 1991/6 respectively. He is currently a professor in Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan, R.O.C. He is the director of The Promotion Center for Network Applications and Services, Innovative Communication Education Project, Ministry of Education, Taiwan, R.O.C. His research interests include broadband Internet and applications, wireless and mobile network protocols, ubiquitous computing and communications, and multimedia streaming. Tz-Heng Hsu received the B.S. degree from Department of Computer Science and Information Engineering, Feng Chia University on 1996/6, and the M.S. degree and Ph.D from Department of Computer Science and Information Engineering, National Cheng Kung University on 1998/7 and 2005/7, Taiwan, R.O.C. He is currently a assistant professor in Department of Computer Science and Information Engineering, Southern Taiwan University of Technology. His research interests are wireless and mobile network protocols, applications over interworked WLAN and cellular networks and communications, and multimedia streaming. Chih-Wen Chao received the B.S. degree from Department of Engineering Science, National Cheng Kung University on 2003/6, and the M.S. degree from Department of Computer Science and Information Engineering, National Cheng Kung University on 2005/7, Taiwan, R.O.C. His research interests are OSA-based applications and distributed multimedia systems.  相似文献   

10.
ZBP: A Zone-Based Broadcasting Protocol for Wireless Sensor Networks   总被引:1,自引:0,他引:1  
Wireless Sensor Networks (WSNs) have been widely used in motoring and collecting interests of environment information. Packet flooding or broadcasting is an essential function for establishing a communication path from sink node to a region of sensor nodes. However, flooding operation consumes power and bandwidth resources and raises the packet collision and contention problems, which reduce the success rate of packet transmissions and consume energy. This article proposes an efficient broadcasting protocol to reduce the number of sensor nodes that forward the query request, hence improves the packet delivery rate and saves bandwidth and power consumptions. Sensor node that received the query request will dynamically transfers the coordinate system according to the zone-ID of source node and determines whether it would forward the request or not in a distributed manner. Compared with the CBM and traditional flooding operation, experimental results show that the proposed zone-based broadcasting protocol decreases the bandwidth and power consumptions, reduces the packet collisions, and achieves high success rate of packet broadcasting.Chih-Yung Chang received the Ph.D. degree in Computer Science and Information Engineering from National Central University, Taiwan, in 1995. He joined the faculty of the Department of Computer and Information Science at Aletheia University, Taiwan, as an Assistant Professor in 1997. He was the Chair of the Department of Computer and Information Science, Aletheia University, from August 2000 to July 2002. He is currently an Associate Professor of Department of Computer Science and Information Engineering at Tamkang University, Taiwan. Dr. Chang served as an Associate Guest Editor of Journal of Internet Technology (JIT), Special Issue on “Wireless Ad Hoc and Sensor Networks” (2004) and a member of Editorial Board of Tamsui Oxford Journal of Mathematical Sciences (2001–2005). He was an Area Chair of IEEE AINA′2005, Vice Chair of IEEE WisCom2005, Track Chair (Learning Technology in Education Track) of IEEE ITRE′2005, Program Co-Chair of MNSA′2005, Workshop Co-Chair of INA′2005, MSEAT′2003, MSEAT′2004, Publication Chair of MSEAT′2005, and the Program Committee Member of ICPP′2004, USW′2005, WASN′2005, and the 11th Mobile Computing Workshop. Dr. Chang is a member of the IEEE Computer Society and IEICE society. His current research interests include wireless sensor networks, mobile learning, Bluetooth radio systems, Ad Hoc wireless networks, and mobile computing.Kuei-Ping Shih received the B.S. degree in Mathematics from Fu-Jen Catholic University, Taiwan, Republic of China, in June 1991 and the Ph.D. degree in Computer Science and Information Engineering from National Central University, Taiwan, Republic of China, in June 1998. After two years of military obligation, he joined the faculty of the Department of Computer Science and Information Engineering, Tamkang University, Taiwan, Republic of China, as an assistant professor in 2000. Dr. Shih served as a Program Area Chair in the IEEE International Conference on Advanced Information Networking and Applications (AINA), 2005, and as a Technical Track Chair in the IEEE International Conference on Information Technology: Research and Education (ITRE), 2005. Dr. Shih’s current research interests include wireless networks, sensor networks, mobile computing, and network protocols design.Dr. Shih is a member of the IEEE Computer and Communication Societies and Phi Tau Phi Scholastic Honor Society.Shih-Chieh Lee received the B.S. degree in Computer Science and Information Engineering from Tamkang University, Taiwan, in 1997. Since 2003 he has been a Ph.D. Students in Department of Computer Science and Information Engineering, Tamkang University. His research interests are wireless sensor networks, Ad Hoc wireless networks, and mobile/wireless computing.  相似文献   

11.
Recently, as the number of mobile terminals (or users) keeps explosively increasing, the location management to track the mobile terminals in mobile communication networks is becoming more important. However, previous schemes have used static location information without any consideration about the moving direction of a mobile terminal. For a fixed paging area, this results in unnecessary pagings, thus increasing the location management cost. In this paper, we propose a new location management scheme using the direction characteristics of a mobile terminal. The direction vector is defined to represent the moving direction of a mobile terminal and to compute a distance from the cell where a location update occurs to the current cell. The offset operation of direction vectors is also presented to represent the position of a mobile terminal in a paging area. This allows the mobile terminal to determine whether a location update will be performed or not. The mobile terminal can also vary its own paging area dynamically according to its moving direction whenever it moves across its paging area. In addition, we develop an analytical model for the proposed scheme which captures the direction characteristics of a mobile terminal based on the Markov model. Analytical results show that the proposed scheme can reduce location management cost by forming a dynamic paging area along the moving direction of a mobile terminal when compared to other schemes.Ui-Sung Song received his B.S and M.S. degrees in Computer Science and Engineering from Korea University, Seoul, Korea in 1997 and 1999, respectively. He is currently a Ph.D. candidate in Computer Science and Engineering from Korea University. Also, he is currently a researcher in the Research Institute of Computer Science and Engineering Technology at Korea University. His research interests include mobile IP, PCS networks, and ad-hoc networks.Joon-Min Gil received his B.S. and M.S. degrees in Computer Science from Korea University, Chochiwon, Korea in 1994 and 1996, respectively. He received his Ph.D. degree in Computer Science and Engineering from Korea University, Seoul, Korea in 2000. From 2001 to 2002, he was a visiting research associate in the Department of Computer Science at the University of Illinois at Chicago, U.S.A. He is currently a senior research engineer in Supercomputing Center at Korea Institute of Science & Technology Information, Daejeon, Korea. His recent research interests include distributed and mobile computing, wireless networks, Internet computing, P2P networks, and grid computing.Chong-Sun Hwang received his M.S. degree in Mathematics from Korea University, Seoul, Korea in 1970, and his Ph.D. degree in Statistics and Computer Science from the University of Georgia in 1978. From 1978 to 1980, he was an assistant professor at South Carolina Lander State University. He is currently a full professor in the Department of Computer Science and Engineering at Korea University, Seoul, Korea. Since 2004, he has been a Dean in the College of Information and Communications at Korea University. His research interests include distributed systems,distributed algorithm, and mobile computing systems  相似文献   

12.
Bluetooth is a most promising technology for the wireless personal area networks and its specification describes how to build a piconet. Though the construction of scatternet from the piconets is left out in the specification, some of the existing solutions discuss the scatternet formation issues and routing schemes. Routing in a scatternet, that has more number of hops and relay nodes increases the difficulties of scheduling and consumes the bandwidth and power resources and thereby impacts on the performance of the entire network. In this paper, a novel routing protocol (LARP) for the Bluetooth scatternet is proposed, which reduces the hop counts between the source and the destination and reconstructs the routes dynamically using the location information of the Bluetooth devices. Besides, a hybrid location-aware routing protocol (HLARP) is proposed to construct the shortest routes among the devices with or without having the location information and degenerate the routing schemes without having any location information. Experimental results show that our protocols are efficient enough to construct the shortest routing paths and to minimize the transmission delay, bandwidth and power consumption as compared to the other protocols that we have considered. Chih-Yung Chang received the Ph.D. degree in Computer Science and Information Engineering from National Central University, Taiwan, in 1995. He joined the faculty of the Department of Computer and Information Science at Aletheia University, Taiwan, as an Assistant Professor in 1997. He was the Chair of the Department of Computer and Information Science, Aletheia University, from August 2000 to July 2002. He is currently an Associate Professor of Department of Computer Science and Information Engineering at Tamkang University, Taiwan. Dr. Chang served as an Associate Guest Editor of Journal of Internet Technology (JIT, 2004), Journal of Mobile Multimedia (JMM, 2005), and a member of Editorial Board of Tamsui Oxford Journal of Mathematical Sciences (2001--2005). He was an Area Chair of IEEE AINA'2005, Vice Chair of IEEE WisCom 2005 and EUC 2005, Track Chair (Learning Technology in Education Track) of IEEE ITRE'2005, Program Co-Chair of MNSA'2005, Workshop Co-Chair of INA'2005, MSEAT'2003, MSEAT'2004, Publication Chair of MSEAT'2005, and the Program Committee Member of USW'2005, WASN'2005, and the 11th Mobile Computing Workshop. Dr. Chang is a member of the IEEE Computer Society, Communication Society and IEICE society. His current research interests include wireless sensor networks, mobile learning, Bluetooth radio systems, Ad Hoc wireless networks, and mobile computing. Prasan Kumar Sahoo got his Master degree in Mathematics from Utkal University, India. He did his M.Tech. degree in Computer Science from Indian Institute of Technology (IIT), Kharagpur, India and received his Ph.D in Mathematics from Utkal University, India in April, 2002. He joined in the Software Research Center, National Central University, Taiwan and currently working as an Assistant Professor, in the department of Information Management, Vanung University, Taiwan, since 2003. He was the Program Committee Member of MSEAT'2004, MSEAT'2005, WASA'2006, and IEEE AHUC'2006. His research interests include the coverage problems, modeling and performance analysis of wireless sensor network and Bluetooth technology. Shih-Chieh Lee received the B.S. degree in Computer Science and Information Engineering from Tamkang University, Taiwan, in 1997. Since 2003 he has been a Ph.D. Students in Department of Computer Science and Information Engineering, Tamkang University. His research interests are wireless sensor networks, Ad Hoc wireless networks, and mobile/wireless computing.  相似文献   

13.
The proper functioning of mobile ad hoc networks depends on the hypothesis that each individual node is ready to forward packets for others. This common assumption, however, might be undermined by the existence of selfish users who are reluctant to act as packet relays in order to save their own resources. Such non-cooperative behavior would cause the sharp degradation of network throughput. To address this problem, we propose a credit-based Secure Incentive Protocol (SIP) to stimulate cooperation among mobile nodes with individual interests. SIP can be implemented in a fully distributed way and does not require any pre-deployed infrastructure. In addition, SIP is immune to a wide range of attacks and is of low communication overhead by using a Bloom filter. Detailed simulation studies have confirmed the efficacy and efficiency of SIP. This work was supported in part by the U.S. Office of Naval Research under Young Investigator Award N000140210464 and under grant N000140210554. Yanchao Zhang received the B.E. degree in Computer Communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, and the M.E. degree in Computer Applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002. Since September 2002, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Wenjing Lou is an assistant professor in the Electrical and Computer Engineering department at Worcester Polytechnic Institute. She obtained her Ph.D degree in Electrical and Computer Engineering from University of Florida in 2003. She received the M.A.Sc degree from Nanyang Technological University, Singapore, in 1998, the M.E degree and the B.E degree in Computer Science and Engineering from Xi'an Jiaotong University, China, in 1996 and 1993 respectively. From Dec 1997 to Jul 1999, she worked as a Research Engineer in Network Technology Research Center, Nanyang Technological University. Her current research interests are in the areas of ad hoc and sensor networks, with emphases on network security and routing issues. Wei Liu received his B.E. and M.E. in Electrical and Information Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1998 and 2001. In August 2005, he received his PhD in Electrical and Computer Engineering from University of Florida. Currently, he is a senior technical member with Scalable Network Technologies. His research interest includes cross-layer design, and communication protocols for mobile ad hoc networks, wireless sensor networks and cellular networks. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor, got an early promotion to an associate professor with tenure in August 2003 and a professor in August 2005. He has published over 150 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on many editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He is a senior member of the IEEE.  相似文献   

14.
In this paper we present PEAS, a randomized energy-conservation protocol that seeks to build resilient sensor networks in the presence of frequent, unexpected node failures. PEAS extends the network lifetime by maintaining a necessary set of working nodes and turning off redundant ones, which wake up after randomized sleeping times and replace failed ones when needed. The fully localized operations of PEAS are based on each individual node's observation of its local environment but do not require per neighbor state at any node; this allows PEAS to scale to very dense node deployment. PEAS is highly robust against node failures due to its simple operations and randomized design; it also ensures asymptotic connectivity. Our simulations and analysis show that PEAS can maintain an adequate working node density in presence of as high as 38% node failures, and a roughly constant overhead of less than 1% of the total energy consumption under various deployment densities. It extends a sensor network's functioning time in linear proportional to the deployed sensor population. Fan Ye received his B.E. in Automatic Control in 1996 and M.S. in Computer Science in 1999, both from Tsinghua University, Beijing, China. He received his Ph.D. in Computer Science in 2004 from UCLA. He is currently with IBM Research. His research interests are in wireless networks, sensor networks and security. Honghai Zhang received his BS in Computer Science in 1998 from University of Science and Technology of China. He received his MS and Ph.D. in Computer Science from University of Illinois at Urbana-Champaign. He is currently with the Wireless Advanced Technology Lab of Lucent Technologies. His research interests are wireless networks, WiMAX, and VoIP over wireless networks. Songwu Lu received both his M.S. and Ph.D. from University of Illinois at Urbana-Champaign. He is currently an associate professor at UCLA Computer Science. He received NSF CAREER award in 2001. His research interests include wireless networking, mobile computing, wireless security, and computer networks. Lixia Zhang received her Ph.D in computer science from the Massachusetts Institute of Technology. She was a member of the research staff at the Xerox Palo Alto Research Center before joining the faculty of UCLA’s Computer Science Department in 1995. In the past she has served on the Internet Architecture Board, Co-Chair of IEEE Communication Society Internet Technical Committee, the editorial board for the IEEE/ACM Transactions on Networking, and technical program committees for many networking-related conferences including SIGCOMM and INFOCOM. Zhang is currently serving as the vice chair of ACM SIGCOMM. Jennifer C. Hou received the Ph.D. degree in Electrical Engineering and Computer Science from The University of Michigan, Ann Arbor in 1993 and is currently a professor in the Department of Computer Science at University of Illinois at Urbana Champaign (UIUC). Prior to joining UIUC, she has taught at Ohio State University and University of Wisconsin - Madison. Dr. Hou has worked in the the areas of network modeling and simualtion, wireless-enabled software infrastructure for assisted living, and capacity optimization in wireless networks. She was a recipient of an ACM Recognition of Service, a Cisco University Research Award, a Lumley Research Award from Ohio State University, and a NSF CAREER award. *A Shorter version of this paper appeared in ICDCS 2003.  相似文献   

15.
There has been much recent attention on using wireless relay networks to forward data from mobile nodes to a base station. This network architecture is motivated by performance improvements obtained by leveraging the highest quality links to a base station for data transfer. With the advent of agile radios it is possible to improve the performance of relay networks through intelligent frequency assignments. First, it is beneficial if the links of the relay network are orthogonal with respect to each other so that simultaneous transmission on all links is possible. Second, diversity can be added to hops in the relay network to reduce error rates. In this paper we present algorithms for forming such relay networks dynamically. The formation algorithms support intelligent frequency assignments and diversity setup. Our results show that algorithms that order the sequence in which nodes join a relay network carefully, achieve the highest amount of diversity and hence best performance. This research is supported in part by NSF grant CNS-0508114. JaeSheung Shin received the B.S. and M.S. degree in Computer Science and Engineering from DongGuk University, Korea, in 1991 and 1993, respectively. He is currently working toward the Ph.D. degree in Computer Science and Engineering at the Pennsylvania State University, University Park. He is a research assistant at the Networking and Security Research Center (NSRC). Prior to joining Pennsylvania State University, he was with Electronics and Telecommunications Research Institute (ETRI), Korea, since 1993. He worked on development of 2G and 3G wireless cellular core network elements. His research interests include mobility management and signaling for wireless cellular and routing and resource allocation for multi-radio multi-hop wireless cellular networks. Kyounghwan Lee received the B.S. degree in Electrical and Electronics Engineering from University of Seoul, Seoul, Korea, in 2000, and the M.S. degree in Information and Communication Engineering from Gwangju Institute of Science and Technology, Gwangju, Korea, in 2002. He is currently a Ph.D candidate at the Electrical Engineering department at the Pennsylvania State University and a research assistant at the Wireless Communications and Networking Laboratory (WCAN@PSU). His research interests include wireless communication theory and relay networks. E-mail: kxl251@psu.edu Aylin Yener received the B.S. degrees in Electrical and Electronics Engineering, and in Physics, from Bogazici University, Istanbul, Turkey, in 1991, and the M.S. and Ph.D. degrees in Electrical and Computer Engineering from Rutgers University, NJ, in 1994 and 2000, respectively. During her Ph.D. studies, she was with Wireless Information Network Laboratory (WINLAB) in the Department of Electrical and Computer Engineering at Rutgers University, NJ. Between fall 2000 and fall 2001, she was with the Electrical Engineering and Computer Science Department at Lehigh University, PA, where she was a P.C. Rossin assistant professor. Currently, she is with the Electrical Engineering department at the Pennsylvania State University, University Park, PA, as an assistant professor. Dr. Yener is a recipient of the NSF CAREER award in 2003. She is an associate editor of the IEEE Transactions on Wireless Communications. Dr. Yener’s research interests include performance enhancement of multiuser systems, wireless communication theory and wireless networking. Thomas F. La Porta received his B.S.E.E. and M.S.E.E. degrees from The Cooper Union, New York, NY, and his Ph.D. degree in Electrical Engineering from Columbia University, New York, NY. He joined the Computer Science and Engineering Department at Penn State in 2002 as a Full Professor. He is the Director of the Networking Research Center at Penn State. Prior to joining Penn State, Dr. La Porta was with Bell Laboratories since 1986. He was the Director of the Mobile Networking Research Department in Bell Laboratories, Lucent Technologies. He is an IEEE Fellow and Bell Labs Fellow. Dr. La Porta was the founding Editor-in-Chief of the IEEE Transactions on Mobile Computing. He has published over 50 technical papers and holds 25 patents.  相似文献   

16.
Packet buffering-and-forwarding is a simple mechanism and has been widely used to provide seamless handoffs in many wireless/mobile networks. However, some undesirable side effects of this mechanism, if not managed appropriately, can easily diminish its effectiveness in providing seamless inter-cell transitions during a handoff. We first examine these side effects and show how inappropriate buffer management by a mobility agent could affect the TCP performance. The throughput of TCP is then studied with special emphasis on the effects of a handoff. We then propose a Last-Come-First-Drop (LCFD) buffer management policy (to be employed by mobility agents) and post-handoff acknowledgement suppression (to be used by mobile nodes) to improvement the TCP performance. Our enhancements are backward compatible and suitable for the gradual/incremental deployment. By deriving an analytical model and conducting numerical analysis, we show that our scheme can improve the TCP throughput up to 30%. Finally, we conduct the ns-2-based simulation to confirm these numerical results, and demonstrate the applicability of the analytic model for predicting TCP throughput in other handoff schemes. Chun-Ting Chou is currently a senior member research staff in Philips Research North America, Briarcliff Manor, New York. He received both the B.S. and M.S. degrees in Electrical Engineering from National Taiwan University in 1995 and 1997, respectively. He received the Ph.D. degree in Electrical Engineering and Computer Science from the University of Michigan, Ann Arbor, in 2004. He is actively involved in standardization of WiMedia Ultra-Wide Band (UWB) Wireless PANs, IEEE 802.15.3c high-speed wireless PANs and IEEE 802.15.5 meshed Wireless PANs. His current research interests include quality of service (QoS), MAC protocols for UWB Wireless PANs, 60-GHz wireless PANs using directional antennas, meshed wireless LANs and PANs, and spectrum agile and cooperative communication. Kang G. Shin is the Kevin and Nancy O’Connor Professor of Computer Science and Founding Director of the Real-Time Computing Laboratory in the Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan. His current research focuses on QoS-sensitive networking and computing as well as on embedded real-time OS, middleware and applications, all with emphasis on timeliness and dependability. He has supervised the completion of 54 PhD theses, and authored/coauthored around 630 technical papers and numerous book chapters in the areas of distributed real-time computing and control, computer networking, fault-tolerant computing, and intelligent manufacturing. He has co-authored (jointly with C. M. Krishna) a textbook “Real-Time Systems,” McGraw Hill, 1997. He has received a number of best paper awards, including the IEEE Communications Society William R. Bennett Prize Paper Award in 2003, the Best Paper Award from the IWQoS’03 in 2003, and an Outstanding IEEE Transactions of Automatic Control Paper Award in 1987. He has also coauthored papers with his students which received the Best Student Paper Awards from the 1996 IEEE Real-Time Technology and Application Symposium, and the 2000 UNSENIX Technical Conference. He has also received several institutional awards, including the Research Excellence Award in 1989, Outstanding Achievement Award in 1999, Service Excellence Award in 2000, Distinguished Faculty Achievement Award in 2001, and Stephen Attwood Award in 2004 from The University of Michigan; a Distinguished Alumni Award of the College of Engineering, Seoul National University in 2002; and 2003 IEEE RTC Technical Achievement Award. He received the B.S. degree in Electronics Engineering from Seoul National University, Seoul, Korea in 1970, and both the M.S. and Ph.D degrees in Electrical Engineering from Cornell University, Ithaca, New York in 1976 and 1978, respectively. From 1978 to 1982 he was on the faculty of Rensselaer Polytechnic Institute, Troy, New York. He has held visiting positions at the U.S. Airforce Flight Dynamics Laboratory, AT &T Bell Laboratories, Computer Science Division within the Department of Electrical Engineering and Computer Science at UC Berkeley, and International Computer Science Institute, Berkeley, CA, IBM T. J. Watson Research Center, Software Engineering Institute at Carnegie Mellon University, and HP Research Laboratories. He also chaired the Computer Science and Engineering Division, EECS Department, The University of Michigan for three years beginning January 1991. He is Fellow of IEEE and ACM, and member of the Korean Academy of Engineering, is serving as the General Chair for the 3rd ACM/USENIX International Conference on Mobile Systems, Applications, and Services (MobiSys’05), was the General Chair of the 2000 IEEE Real-Time Technology and Applications Symposium, the Program Chair of the 1986 IEEE Real-Time Systems Symposium (RTSS), the General Chair of the 1987 RTSS, the Guest Editor of the 1987 August special issue of IEEE Transactions on Computers on Real-Time Systems, a Program Co-Chair for the 1992 International Conference on Parallel Processing, and served numerous technical program committees. He also chaired the IEEE Technical Committee on Real-Time Systems during 1991--93, was a Distinguished Visitor of the Computer Society of the IEEE, an Editor of IEEE Trans. on Parallel and Distributed Computing, and an Area Editor ofInternational Journal of Time-Critical Computing Systems,Computer Networks, and ACM Transactions on Embedded Systems.  相似文献   

17.
18.
Multiconstrained QoS multipath routing in wireless sensor networks   总被引:2,自引:0,他引:2  
Sensor nodes are densely deployed to accomplish various applications because of the inexpensive cost and small size. Depending on different applications, the traffic in the wireless sensor networks may be mixed with time-sensitive packets and reliability-demanding packets. Therefore, QoS routing is an important issue in wireless sensor networks. Our goal is to provide soft-QoS to different packets as path information is not readily available in wireless networks. In this paper, we utilize the multiple paths between the source and sink pairs for QoS provisioning. Unlike E2E QoS schemes, soft-QoS mapped into links on a path is provided based on local link state information. By the estimation and approximation of path quality, traditional NP-complete QoS problem can be transformed to a modest problem. The idea is to formulate the optimization problem as a probabilistic programming, then based on some approximation technique, we convert it into a deterministic linear programming, which is much easier and convenient to solve. More importantly, the resulting solution is also one to the original probabilistic programming. Simulation results demonstrate the effectiveness of our approach. This work was supported in part by the U.S. National Science Foundation under grant DBI-0529012, the National Science Foundation Faculty Early Career Development Award under grant ANI-0093241 and the Office of Naval Research under Young Investigator Award N000140210464. Xiaoxia Huang received her BS and MS in the Electrical Engineering from Huazhong University of Science and Technology in 2000 and 2002, respectively. She is completing her Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida. Her research interests include mobile computing, QoS and routing in wireless ad hoc networks and wireless sensor networks. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor, got an early promotion to an associate professor with tenure in August 2003 and to a full professor in August 2005. He holds a University of Florida Research Foundation (UFRF) Professorship from 2006 to 2009. He has published over 200 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on several editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He have also been activitely participating in professional conference organizations such as serving as The Steering Committee Co-Chair for QShine, the Technical Program Vice-Chair for IEEE INFOCOM’2005, Technical Program Symposium Co-Chair for IEEE Globecom’2004, and a member of Technical Program Committee for IEEE INFOCOM (1998, 2000, 2003–2007).  相似文献   

19.
We develop and analyze algorithms for propagating updates by mobile hosts in wireless client–server environments that support disconnected write operations, with the goal of minimizing the tuning time for update propagation to the server. These algorithms allow a mobile host to update cached data objects while disconnected and propagate the updates to the server upon reconnection for conflict resolutions. We investigate two algorithms applicable to mobile systems in which invalidation reports/data can be broadcast to mobile hosts periodically. We show that there exists an optimal broadcasting period under which the tuning time is minimized for update propagations. We perform a comparative analysis between these two update propagation algorithms that rely on broadcasting data and an algorithm that does not, and identify conditions under which an algorithm should be applied to reduce the total tuning time for update propagation by the mobile user to save the valuable battery power and avoid high communication cost. For real-time applications, we address the tradeoff between tuning time and access time with the goal to select the best update propagation algorithm that can minimize the tuning time while satisfying the imposed real-time deadline constraint. The analysis result is applicable to file/data objects that mobile users may need to modify while on the move. Ing-Ray Chen received the BS degree from the National Taiwan University, Taipei, Taiwan, and the MS and PhD degrees in computer science from the University of Houston. He is currently an associate professor in the Department of Computer Science at Virginia Tech. His research interests include mobile computing, pervasive computing, multimedia, distributed systems, real-time intelligent systems, and reliability and performance analysis. Dr. Chen has served on the program committee of numerous conferences, including as program chair for 29th IEEE Annual International Computer Software and Application Conference in 2005, 14th IEEE International Conference on Tools with Artificial Intelligence in 2002, and 3rd IEEE Symposium on Application-Specific Systems and Software Engineering Technology in 2000. Dr. Chen currently serves as an Associate Editor for IEEE Transactions on Knowledge and Data Engineering, The Computer Journal, and International Journal on Artificial Intelligence Tools. He is a member of the IEEE/CS and ACM. Ngoc Anh Phan received her Bachelor of Science degree from Moscow Technical University of Communication and Computer Science in 1997, and a Master of Science degree in Computer Science from Virginia Polytechnic Institute and State University (Virginia Tech) in 1999. She is currently a Ph.D student at Virginia Tech and a Senior Software Engineer at America Online Inc. Her research interests include wireless communications, data management, sensor networks, fault tolerance, and mobile computing. I-Ling Yen received her BS degree from Tsing-Hua University, Taiwan, and her MS and PhD degrees in Computer Science from the University of Houston. She is currently an Associate Professor of Computer Science at the University of Texas at Dallas. Dr. Yen's research interests are in distributed systems, fault-tolerant computing, self-stabilization algorithms, and security. She has served as program co-chair for the 1997 IEEE High Assurance Systems Engineering Workshop, the 1999 IEEE Symposium on Application-Specific Systems and Software Engineering Technology, and the 1999 Annual IEEE International Conference on Computer Software and Applications Conference. Dr. Yen is a member of the IEEE/CS.  相似文献   

20.
The cdma2000 1xEV-DO mobile communication system provides broadcast and multicast services (BCMCS) to meet an increasing demand for multimedia data services. But the servicing of video streams over a BCMCS network faces a challenge from the unreliable and error-prone nature of the radio channel. BCMCS uses Reed-Solomon coding integrated with the MAC protocol for error recovery. We show that this is not effective for mobiles moving at the edge of service area, where the channel condition is bad, resulting in significantly lower video quality. To improve the playback quality of an MPEG-4 FGS (fine granularity scalability) video stream, we propose a hybrid error recovery scheme incorporating a packet scheduler, which uses slots saved by reducing the Reed-Solomon coding overhead. Packets to be retransmitted are prioritized by a utility function which reduces the packet error-rate in the application layer within a fixed retransmission budget by considering of the map of the error control block at each mobile node. Our error recovery scheme also uses the characteristics of MPEG-4 FGS to improve the video quality even for a slow-moving mobile which is experiencing a high error-rate in the physical channel because of error bursts. Kyungtae Kang received B.S. (1999) and M.S. (2001) degrees in computer engineering from Seoul National University, Korea. He received Ph.D. degree in Dept. of Electrical Engineering and Computer Science from Seoul National University, Korea in 2007. He is a member of IEEE and IEICE. His research interests include packet scheduling, error control, QoS provision, and energy minimization issues in nextgeneration wireless/mobile networks. In particular, he is researching the performance and energy requirements of 3G cellular broadcast services such as BCMCS and MBMS. Yongwoo Cho received the Premedical Degree from the College of Medicine, University of Ulsan, in 1997, a B.S. degree in Computer Science from Korea National Open University in 2004, while he was an military service, and an M.S. degree in Electrical Engineering and Computer Science from Seoul National University in 2006. He has worked as a researcher in Dooin Corp. and as a general manager in Bluecord Technology, Inc. His primary interests include multimedia systems, digital broadcasting, next-generation wireless/mobile networks, error control, real-time computing, and low-power design. He is currently a Ph.D. student in the School of Electrical Engineering and Computer Science at Seoul National University. Heonshik Shin received the B.S. degree in applied physics from Seoul National University, Korea, in 1973. Since he received Ph.D. degree in computer engineering from the University of Texas at Austin in 1985, he has actively involved himself in researches of various topics, ranging from real-time computing and distributed computing to mobile systems and software. He is currently a professor of School of Computer Science and Engineering at Seoul National University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号