共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
一种基于粗集理论的属性约简改进算法 总被引:11,自引:0,他引:11
利用粗集理论中属性的依赖度和重要度性质,提出一种对数据属性进行约简的改进算法,对该算法进行分析,并运用一个简单的例子对该算法的有效性进行验证。 相似文献
3.
一种基于粗集理论属性约简的粗化算法 总被引:2,自引:0,他引:2
本文基于粗集理论,针对知识表达系统提出了一种新的归纳学习方法,对该方法中条件属性的简化进行了详细的讨论,并给出了一种具体的属性约简算法,其特点是简单,容易实现,考虑了属性值代表范围的合理性。 相似文献
4.
粗集理论通过对原始决策表的约简从而获取规则知识,其核心部分是属性约简.经过约简后的数据更有价值,更能准确地获取知识.文中提出了一种新的启发式属性约简算法,并给出了算法的详细步骤和具体的实验示例.该算法通过不一致计数和互信息增量的计算来衡量属性的重要性,避免了对属性之间随机组合情况的搜索,可以提高求解速度.实验结果表明,相比较于动态约简算法和标准遗传算法,所提出的算法获得的约简属性集更加简洁和高效. 相似文献
5.
一种基于粗集理论的增量式属性约简算法 总被引:3,自引:1,他引:2
增量式学习中,当信息系统的对象和决策属性不变而不断增加条件属性时,为了获得该系统的约简属性,一般方法是对决策表中的所有数据重新计算,但这种方法显然效率很低且不必要.在粗集理论的基础上,给出相对区分矩阵和绝对区分矩阵的定义,提出一种新的增量式属性约简算法.通过实例得知:由该算法得到的属性约简与传统算法得到的属性约简结果相同,但该算法不仅降低了时间复杂度而且其分类质量一般要优于原来的分类质量,所以该属性约简具有一定的实用价值. 相似文献
6.
Reduction of attributes is one of important topics in the research on rough set theory.Wong S K M and Ziarko W have proved that finding the minimal attribute reduction of decision table is a NP-hard problem.Algorithm A (the improved algorithm to Jelonek) choices optimal candidate attribute by using approximation quality of single attribute,it improves efficiency of attribute reduction,but yet exists the main drawback that the single atribute having maximum approxiamtion quality is probably optimal candidate attribute.Therefore,in this paper, we introduce the concept of compatible decision rule,and propose an attribute reduction algorithm based on rules (ARABR).Algorithm ARABR provides a new method that measures the relevance between extending attribute and the set of present attributes,the method assures that the optimal attribute is extended,and obviously reduces the search space.Theory analysis shows that algorithm ARABR is of lower computational complexity than Jelonek's algorithm,and overcomes effectively the main drawback of algorithm A. 相似文献
7.
一种基于粗集理论的分类规则挖掘的实现方法 总被引:8,自引:0,他引:8
研究各种高性能和高可扩展性的分类算法是数据挖掘面临的主要问题之一。基于粗集理论的分类规则挖掘是一种重要的方法,在分析有关算法的基础上提出一种改进方法,并通过实例证明了该方法的效率有所提高。此外,还提出了一种分类规则约简方法,使挖掘的结果更简洁、更易理解。 相似文献
8.
一种基于粗集的协同过滤算法 总被引:5,自引:0,他引:5
针对协同过滤中的数据稀疏问题,提出了一种基于粗集的协同过滤算法.首先通过自动填补空缺评分降低数据稀疏性;然后采用分类近似质量计算用户闻的相似性形成最近邻居,产生推荐预测.实验结果表明,该算法有效地解决了数据稀疏问题,提高了推荐的质量. 相似文献
9.
贝叶斯统计推断方法是故障诊断技术领域一项重要的技术,在统计模式识别领域具有广泛的应用;针对朴素贝叶斯方法的缺点,提出了基于粗集理论的贝叶斯诊断方法,该方法利用历史诊断记录,综合考虑故障征兆和故障原因之间的依赖关系,基于粗集方法进行了故障征兆属性信息的约简,得到了故障征兆和故障原因的最小描述;通过属性约简,改善了贝叶斯方法中要求的属性信息之间的独立性限制,实验结果表明,基于粗集理论的贝叶斯故障诊断方法对于简化诊断模型,减少算法执行时间,提高诊断速度具有重要作用. 相似文献
10.
决策表信息系统核属性的计算是粗集理论中的一个重要问题。从知识约简及核属性的定义出发,详细分析了文献[5]中的方法用于不相容决策信息系统中产生错误原因,并提出了一个新的基于等价类运算计算核属性的方法,该方法的优点在于同时适用相容决策表及不相容决策表核计算,且计算核属性不需要生成分明矩阵的中间步骤,最后证明了这种方法的有效性。 相似文献
11.
决策系统的约简是Rough集理论的核心内容之一,本文提出了一种决策表约简的算法。该算法通过构造一个差异表,不需要对决策表中的记录进行逐条考察,在从差异表中选出重要属性同时也抽取该属性的对对象分类起决定作用的属性值,最后得到原决策系统的简化形式。与传统的约简算法相比,具有更低的复杂性。 相似文献
12.
WEI Liang 《数字社区&智能家居》2008,(28)
粗糙集理论是一种研究不精确、不确定性、处理不完备知识的数学工具,目前被广泛应用于人工智能、模式识别、机器学习、决策支持和数据挖掘等领域。该文通过介绍粗糙集理论及特点,叙述了粗糙集理论在各领域的应用发展情况,并且展望了其未来发展趋势。 相似文献
13.
粗糙集在电力变压器故障诊断中的应用 总被引:2,自引:0,他引:2
电力变压器是一种比较复杂的系统,在实际故障诊断中要想获得完备的实验数据比较困难。针对该问题,提出了一种基于粗糙集的电力变压器故障诊断新方法,即分析搜集到的电力变压器历史故障数据,确定条件属性集和决策属性集;对条件属性集进行约简,去除冗余信息,提取关键信息,得到相应的规则集;利用该规则集对电力变压器进行故障诊断。实例分析验证了该方法的正确性和有效性。 相似文献
14.
韦良 《数字社区&智能家居》2008,(10):172-174
粗糙集理论是一种研究不精确、不确定性、处理不完备知识的数学工具,目前被广泛应用于人工智能、模式识别、机器学习、决策支持和数据挖掘等领域。该文通过介绍粗糙集理论及特点,叙述了粗糙集理论在各领域的应用发展情况,并且展望了其未来发展趋势。 相似文献
15.
16.
基于粗糙集理论的客户关系管理 总被引:1,自引:0,他引:1
粗糙集理论是一种新型的数据挖掘和决策分析方法,利用粗糙集理论进行决策表的知识约简与决策规则挖掘已经成为研究热点。本文介绍了粗糙集的基本理论,通过决策属性支持度定义的条件属性对决策属性重要性的启发式信息,求取决策表的最小约简。并将该方法用于对企业客户进行分类,为客户关系管理的决策支持提供了新的解决方法。 相似文献
17.
知识约简问题是粗集理论的一个核心问题,文章提出了一种基于混合遗传算法的相对约简算法,把模拟退火融入到遗传算法中形成混合遗传算法,提高了遗传算法的优化效率,并在此基础上寻求最小条件属性集及最小属性值约简,论文最后以某导弹测控系统配电分系统故障诊断为例,证明该算法是一种行之有效的约简算法,从而为导弹系统的故障诊断提供了一条新思路. 相似文献
18.
粗糙集理论是一种有效的信息处理工具,属性约简是粗糙集理论研究的一个核心内容。为了能够较为有效地获得不相容决策表较优的属性约简,在对文献[7]中属性约简算法分析的基础上,根据不相容决策表约简不改变决策表正域的原则,仅考虑相对差异比较表中与正域相关的实例对,同时结合属性重要性作为特征选取的启发式信息,提出了一种改进的启发式属性约简算法。该算法在不增加算法时间复杂度的前提下能够处理不相容决策表。最后,通过实例完整演示了该方法,表明该算法是有效的。 相似文献
19.
粗糙集理论是一种有效的信息处理工具,属性约简是粗糙集理论研究的一个核心内容.为了能够较为有效地获得不相容决策表较优的属性约简,在对文献[7]中属性约简算法分析的基础上,根据不相容决策表约简不改变决策表正域的原则,仅考虑相对差异比较表中与正域相关的实例对,同时结合属性重要性作为特征选取的启发式信息,提出了一种改进的启发式属性约简算法.该算法在不增加算法时间复杂度的前提下能够处理不相容决策表.最后,通过实例完整演示了该方法,表明该算法是有效的. 相似文献
20.
值约简是粗糙集理论的一个重要研究课题。而现有的很多值约简算法。在执行效率上还有待提高。通过对现有的启发式值约简算法的研究,提出了一种新的基于属性值重要性的粗糙集值约简算法,并通过实例分析验证了该算法的可行性和有效性。 相似文献