首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This paper investigates the application of evolutionary multi-objective optimization to two-dimensional procedural texture synthesis. Genetic programming is used to evolve procedural texture formulae. Earlier work used multiple feature tests during fitness evaluation to rate how closely a candidate texture matches visual characteristics of a target texture image. These feature test scores were combined into an overall fitness score using a weighted sum. This paper improves this research by replacing the weighted sum with a Pareto ranking scheme, which preserves the independence of feature tests during fitness evaluation. Three experiments were performed: a pure Pareto ranking scheme, and two Pareto experiments enhanced with parameterless population divergence strategies. One divergence strategy is similar to that used by the NSGA-II system, and scores individuals using their nearest-neighbour distance in feature-space. The other strategy uses a normalized, ranked abstraction of nearest neighbour distance. A result of this work is that acceptable textures can be evolved much more efficiently and with less user intervention with MOP evolution than compared to the weighted sum approach. Although the final acceptability of a texture is ultimately a subjective decision of the user, the proposed use of multi-objective evolution is useful for generating for the user a diverse assortment of possibilities that reflect the important features of interest. Brian J. Ross, Ph.D.: He is a professor of computer science at Brock University, where he has worked since 1992. He obtained his B.C.Sc. at the University of Manitoba, Canada in 1984, his M.Sc. at the University of British Columbia, Canada in 1988 and his Ph.D. at the University of Edinburgh, Scotland in 1992. His research interests include evolutionary computation, machine learning, language induction, concurrency, computer graphics, computer music and logic programming. Han Zhu, M.Sc.: She is a programmer analyst at Total System Service Company, where she has worked since 2003. She obtained her B.Sc. at Brock University, Canada, in 2002, her M.Sc. at the University of Western Ontario, Canada, in 2003.  相似文献   

2.
Summary This paper proposes a self-stabilizing protocol which circulates a token on a connected network in nondeterministic depth-first-search order, rooted at a special node. Starting with any initial state in which the network may have no token at all or more than one token, the protocol eventually makes the system stabilize in states having exactly one circulating token. With a slight modification to the protocol —by removing nondeterminism in the search — a depth-first-search tree on the network can be constructed. The proposed protocol runs on systems that allow parallel operations. Shing-Tsaan Huang was born in Taiwan on September 4, 1949. He got his Ph.D. degree in 1985 from Department of Computer Science, University of Maryland at College Park. Before he pursued his Ph.D. degree, he had worked several years in the computer industry in Taiwan. Professor Huang is currently the chairman of the Department of Computer Science, Tsing Hua University, Taiwan, Republic of China. His research interests include interconnection networks, operating systems and distributed computing. He is a senior member of the IEEE Computer Society and a member of the Association for Computing Machinery. Nian-Shing Chen was born in Taiwan on October 21, 1961. He received his Ph.D. degree in computer science from National Tsing Hua University in 1990. Dr. Chen is currently an associate professor with the Department of Information Management at Sun Yat-Sen University of Taiwan. His research interests include distributed systems, computer networks, computer viruses and expert systems. He is a member of IEEE and Phi Tau Phi honorary society.This research is supported by National Science Council of the Republic of China under the contract NSC81-0408-E-007-05 and NSC82-0408-E-007-027  相似文献   

3.
Recently, life scientists have expressed a strong need for computational power sufficient to complete their analyses within a realistic time as well as for a computational power capable of seamlessly retrieving biological data of interest from multiple and diverse bio-related databases for their research infrastructure. This need implies that life science strongly requires the benefits of advanced IT. In Japan, the Biogrid project has been promoted since 2002 toward the establishment of a next-generation research infrastructure for advanced life science. In this paper, the Biogrid strategy toward these ends is detailed along with the role and mission imposed on the Biogrid project. In addition, we present the current status of the development of the project as well as the future issues to be tackled. Haruki Nakamura, Ph.D.: He is Professor of Protein Informatics at Institute for Protein Research, Osaka University. He received his B.S., M.A. and Ph.D. from the University of Tokyo in 1975, 1977 and 1980 respectively. His research field is Biophysics and Bioinformatics, and has so far developed several original algorithms in the computational analyses of protein electrostatic features and folding dynamics. He is also a head of PDBj (Protein Data Bank Japan) to manage and develop the protein structure database, collaborating with RCSB (Research Collaboratory for Structural Bioinformatics) in USA and MSD-EBI (Macromolecular Structure Database at the European Bioinformatics Institute) in EU. Susumu Date, Ph.D.: He is Assistant Professor of the Graduate School of Information Science and Technology, Osaka University. He received his B.E., M.E. and Ph.D. degrees from Osaka University in 1997, 2000 and 2002, respectively. His research field is computer science and his current research interests include application of Grid computing and related information technologies to life sciences. He is a member of IEEE CS and IPSJ. Hideo Matsuda, Ph.D.: He is Professor of the Department of Bioinformatic Engineering, the Graduate School of Information Science and Technology, Osaka University. He received his B.S., M.Eng. and Ph.D. degrees from Kobe University in 1982, 1984 and 1987 respectively. For M.Eng. and Ph.D. degrees, he majored in computer science. His research interests include computational analysis of genomic sequences. He has been involved in the FANTOM (Functional Annotation of Mouse) Project for the functional annotation of RIKEN mouse full-length cDNA sequences. He is a member of ISCB, IEEE CS and ACM. Shinji Shimojo, Ph.D.: He received M.E. and Ph.D. degrees from Osaka University in 1983 and 1986 respectively. He was an Assistant Professor with the Department of Information and Computer Sciences, Faculty of Engineering Science at Osaka University from 1986, and an Associate Professor with Computation Center from 1991 to 1998. During the period, he also worked as a visiting researcher at the University of California, Irvine for a year. He has been Professor with Cybermedia Center (then Computation Center) at Osaka University since 1998. His current research work focus on a wide variety of multimedia applications, peer-to-peer communication networks, ubiquitous network systems and Grid technologies. He is a member of ACM, IEEE and IEICE.  相似文献   

4.
This paper proposes the use of more than one clustering method to improve clustering performance,Clustering is an optimization procedure based on a specific clustering criterion.Clustering combination can be regarded as a technique that constructs and processes multiple clustering criteria.Since the global and local clustering criteria are complementary rather than competitive,combining these two types of clustering criteria may enhance the clustering performance,In our past work,a multi-objective programming based simultaneous clustering combination algorithm has been propsed,which incorporates multiple criteria into an objective function by a weighting method,and solves this problem with constrained nonlinear optimization programming.But this algorithm has high computaional complexity,Here a sequential combination approach is investigated,which first uses the global criterion based clustering to produce an initial result ,then uses the local criterion based informaiton to improve the initial result with a probabilistic relaxation algorithm or linear additive model.Compared with the simultaneous combination method,sequential combination has low computational complexity.Results on some simulated data and standard test data are reported.It appears that clustering performance improvement can be achieved at low cost through sequential combination.  相似文献   

5.
In this paper, we propose a framework for enabling for researchers of genetic algorithms (GAs) to easily develop GAs running on the Grid, named “Grid-Oriented Genetic algorithms (GOGAs)”, and actually “Gridify” a GA for estimating genetic networks, which is being developed by our group, in order to examine the usability of the proposed GOGA framework. We also evaluate the scalability of the “Gridified” GA by applying it to a five-gene genetic network estimation problem on a grid testbed constructed in our laboratory. Hiroaki Imade: He received his B.S. degree in the department of engineering from The University of Tokushima, Tokushima, Japan, in 2001. He received the M.S. degree in information systems from the Graduate School of Engineering, The University of Tokushima in 2003. He is now in Doctoral Course of Graduate School of Engineering, The University of Tokushima. His research interests include evolutionary computation. He currently researches a framework to easily develop the GOGA models which efficiently work on the grid. Ryohei Morishita: He received his B.S. degree in the department of engineering from The University of Tokushima, Tokushima, Japan, in 2002. He is now in Master Course of Graduate School of Engineering, The University of Tokushima, Tokushima. His research interest is evolutionary computation. He currently researches GA for estimating genetic networks. Isao Ono, Ph.D.: He received his B.S. degree from the Department of Control Engineering, Tokyo Institute of Technology, Tokyo, Japan, in 1994. He received Ph.D. of Engineering at Tokyo Institute of Technology, Yokohama, in 1997. He worked as a Research Fellow from 1997 to 1998 at Tokyo Institute of Technology, and at University of Tokushima, Tokushima, Japan, in 1998. He worked as a Lecturer from 1998 to 2001 at University of Tokushima. He is now Associate Professor at University of Tokushima. His research interests include evolutionary computation, scheduling, function optimization, optical design and bioinformatics. He is a member of JSAI, SCI, IPSJ and OSJ. Norihiko Ono, Ph.D.: He received his B.S. M.S. and Ph.D. of Engineering in 1979, 1981 and 1986, respectively, from Tokyo Institute of Technology. From 1986 to 1989, he was Research Associate at Faculty of Engineering, Hiroshima University. From 1989 to 1997, he was an associate professor at Faculty of Engineering, University of Tokushima. He was promoted to Professor in the Department of Information Science and Intelligent Systems in 1997. His current research interests include learning in multi-agent systems, autonomous agents, reinforcement learning and evolutionary algorithms. Masahiro Okamoto, Ph.D.: He is currently Professor of Graduate School of Systems Life Sciences, Kyushu University, Japan. He received his Ph.D. degree in Biochemistry from Kyushu University in 1981. His major research field is nonlinear numerical optimization and systems biology. His current research interests cover system identification of nonlinear complex systems by using evolutional computer algorithm of optimization, development of integrated simulator for analyzing nonlinear dynamics and design of fault-tolerant routing network by mimicking metabolic control system. He has more than 90 peer reviewed publications.  相似文献   

6.
This paper discusses aspects of dependability of real-time communication. In particular, we consider timing behaviour under fault conditions for Controller Area Network (CAN) and the extension Time-triggered CAN (TTCAN) based on a time-driven schedule. We discuss the differences between these buses and their behaviour under electromagnetic interference. We present response timing analyses for CAN and TTCAN in the presence of transient network faults using a probabilistic fault model where random faults from electromagnetic interference occur. The CAN analysis provides a probability distribution of worst case response times for message frames. The results indicate that CAN may generally provide a higher probability of delivering messages on time than TTCAN. The CAN analysis result is used to discuss an approach to implementing a bus guardian for event-triggered systems.Ian Broster is a research associate at the University of York, his research includes real-time communication and work on the CAN protocol. Current research focuses on next-generation flexible scheduling for real-time operating systems. His research interests include probabilistic analysis, timing analysis of non-deterministic systems, flexible scheduling, real-time communication, simulation and modelling. He received his M.Eng. degree in 1999 and a Ph.D. in 2003 for his work on flexible real-time communication at the University of York, U.K.Alan Burns has worked for many years on a number of different aspects of real-time systems engineering. He graduated in 1974 in Mathematics from Sheffield University; he then took a D.Phil, in the Computer Science Department at the University of York. After a short period of employment at UKAEA Research Centre, Harwell, he was appointed to a lectureship at Bradford University in 1979. He was subsequently promoted to Senior Lecturer in 1986. In January 1990 he took up a Readership at the University of York in the Computer Science Department. During 1994 he was promoted to a Personal Chair. In 1999 he became Head of the Computer Science Department at York.Guillermo Rodríguez-Navas holds a degree in Telecommunication Engineering by the University of Vigo, Spain. He is currently doing a Ph.D. in Computer Science at the University of the Balearic Islands, Spain. He is also a member of the System, Robotics and Vision (SRV) research group at this university. His research is focused on dependable and real-time distributed embedded systems. In particular, he has addressed various issues related to the Controller Area Network (CAN) field bus, such as fault tolerance, clock synchronization and response time analysis.  相似文献   

7.
In this paper,a noverl technique adopted in HarkMan is introduced.HarkMan is a keywore-spotter designed to automatically spot the given words of a vocabulary-independent task in unconstrained Chinese telephone speech.The speaking manner and the number of keywords are not limited.This paper focuses on the novel technique which addresses acoustic modeling,keyword spotting network,search strategies,robustness,and rejection.The underlying technologies used in HarkMan given in this paper are useful not only for keyword spotting but also for continuous speech recognition.The system has achieved a figure-of-merit value over 90%.  相似文献   

8.
The research presented in this paper approaches the issue of robot team navigation using relative positioning. With this approach each robot is equipped with sensors that allow it to independently estimate the relative direction of an assigned leader. Acoustic sensor systems are used and were seen to work very effectively in environments where datum relative positioning systems (such as GPS or acoustic transponders) are typically ineffective. While acoustic sensors provide distinct advantages, the variability of the acoustic environment presents significant control challenges. To address this challenge, directional control of the robot was accomplished with a feed forward neural network trained using a genetic algorithm, and a new approach to training using recent memories was successfully implemented. The design of this controller is presented and its performance is compared with more traditional classic logic and behavior controllers. Patrick McDowell received his bachelor's degree in Computer Science in 1984 from the University of Idaho. He spent the next 15 years working as a computer scientist for a small defense contractor where he specialized in real time data acquisition, application development, and image processing. In 1999 he received his master's degree in computer science from the University of Southern Mississippi. In 2000 he began work at the Naval Research Lab where he has focused on application of machine learning techniques to autonomous underwater navigation. In 2005 he received his Ph.D. in Computer Science from Louisiana State University. His research interests include legged robotics, machine learning, and artificial intelligence. In Fall of 2006 he joined Southeastern Louisiana University as an assistant professor of Computer Science. Brian S. Bourgeois received his Ph.D. in Electrical Engineering from Tulane University located in New Orleans, LA in 1991. Since then he has worked at the Stennis Space Center, MS detachment of the Naval Research Laboratory. He has worked on research projects spanning an array of technologies including airborne survey sytems, acoustic backscattering, bathymetry and imaging sonar systems, the ORCA unmanned underwater vehicle and the development of an autonomous survey system for hydrographic survey ships. He is presently the head of the Position, Navigation and Timing team at NRL with research interests including underwater positioning and communications and autonomous navigation. Ms. McDowell received her M.S. in Applied Physics in 2002 from the University or New Orleans. She is presently a candidate for a Ph. D. in Engineering and Applied Science. She joined the Naval Research Laboratory in 1991 as a research engineer and has spent most of that time working in experimental and theoretical acoustic modeling. Ms. McDowell's specific research interest lie in the areas of sonar performance analysis. Dr. S. S. Iyengar is the Chairman and Roy Paul Daniels Chaired Professor of Computer Science at Louisiana State University and is also Satish Dhawan Chaired Professor at Indian Institute of Science. He has been involved with research in high-performance algorithms, data structures, sensor fusion, data mining, and intelligent systems since receiving his Ph.D. degree (1974) and his M.S. from the Indian Institute of Science (1970). He has been a consultant to several industrial and government organizations (JPL, NASA etc.). In 1999, Professor Iyengar won the most prestigious research award titled Distinguished Research Award and a university medal for his research contributions in optimal algorithms for sensor fusion/image processing. Dr. Jianhua Chen received her Ph.D. in computer science in 1988 from Jilin University, Chang Chun, China. In August 1988, She joined the Computer Science Department of Louisiana State University, Baton Rouge, USA, where she is currently an associate professor. Dr. Chen's research interests include Machine Learning and Data Mining, Fuzzy Sets and Systems, Knowledge Representation and Reasoning.  相似文献   

9.
Timing constraints for radar tasks are usually specified in terms of the minimum and maximum temporal distance between successive radar dwells. We utilize the idea of feasible intervals for dealing with the temporal distance constraints. In order to increase the freedom that the scheduler can offer a high-level resource manager, we introduce a technique for nesting and interleaving dwells online while accounting for the energy constraint that radar systems need to satisfy. Further, in radar systems, the task set changes frequently and we advocate the use of finite horizon scheduling in order to avoid the pessimism inherent in schedulers that assume a task will execute forever. The combination of feasible intervals and online dwell packing allows modular schedule updates whereby portions of a schedule can be altered without affecting the entire schedule, hence reducing the complexity of the scheduler. Through extensive simulations we validate our claims of providing greater scheduling flexibility without compromising on performance when compared with earlier work based on templates constructed offline. We also evaluate the impact of two parameters in our scheduling approach: the template length (or the extent of dwell nesting and interleaving) and the length of the finite horizon. Sathish Gopalakrishnan is a visting scholar in the Department of Computer Science, University of Illinois at Urbana-Champaign, where he defended his Ph.D. thesis in December 2005. He received an M.S. in Applied Mathematics from the University of Illinois in 2004 and a B.E. in Computer Science and Engineering from the University of Madras in 1999. Sathish’s research interests concern real-time and embedded systems, and the design of large-scale reliable systems. He received the best student paper award for his work on radar dwell scheduling at the Real-Time Systems Symposium 2004. Marco Caccamo graduated in computer engineering from the University of Pisa in 1997 and received the Ph.D. degree in computer engineering from the Scuola Superiore S. Anna in 2002. He is an Assistant Professor of the Department of Computer Science at the University of Illinois. His research interests include real-time operating systems, real-time scheduling and resource management, wireless sensor networks, and quality of service control in next generation digital infrastructures. He is recipient of the NSF CAREER Award (2003). He is a member of ACM and IEEE. Chi-Sheng Shih is currently an assistant professor at the Graduate Institute of Networking and Multimedia and Department of Computer Science and Information Engineering at National Taiwan University since February 2004. He received the B.S. in Engineering Science and M.S. in Computer Science from National Cheng Kung University in 1993 and 1995, respectively. In 2003, he received his Ph.D. in Computer Science from the University of Illinois at Urbana-Champaign. His main research interests are embedded systems, hardware/software codesign, real-time systems, and database systems. Specifically, his main research interests focus on real-time operating systems, real-time scheduling theory, embedded software, and software/hardware co-design for system-on-a-chip. Chang-Gun Lee received the B.S., M.S. and Ph.D. degrees in computer engineering from Seoul National University, Korea, in 1991, 1993 and 1998, respectively. He is currently an Assistant Professor in the Department of Electrical Engineering, Ohio State University, Columbus. Previously, he was a Research Scientist in the Department of Computer Science, University of Illinois at Urbana-Champaign from March 2000 to July 2002 and a Research Engineer in the Advanced Telecomm. Research Lab., LG Information & Communications, Ltd. from March 1998 to February 2000. His current research interests include real-time systems, complex embedded systems, QoS management, and wireless ad-hoc networks. Chang-Gun Lee is a member of the IEEE Computer Society. Lui Sha graduated with the Ph.D. degree from Carnegie-Mellon University in 1985. He was a Member and then a Senior Member of Technical Staff at Software Engineering Institute (SEI) from 1986 to 1998. Since Fall 1998, he has been a Professor of Computer Science at the University of Illinois at Urbana Champaign, and a Visiting Scientist of the SEI. He was the Chair of IEEE Real Time Systems Technical Committee from 1999 to 2000, and has served on its Executive Committee since 2001. He was a member of National Academy of Science’s study group on Software Dependability and Certification from 2004 to 2005, and is an IEEE Distinguished Visitor (2005 to 2007). Lui Sha is a Fellow of the IEEE and the ACM.  相似文献   

10.
Information service plays a key role in grid system, handles resource discovery and management process. Employing existing information service architectures suffers from poor scalability, long search response time, and large traffic overhead. In this paper, we propose a service club mechanism, called S-Club, for efficient service discovery. In S-Club, an overlay based on existing Grid Information Service (GIS) mesh network of CROWN is built, so that GISs are organized as service clubs. Each club serves for a certain type of service while each GIS may join one or more clubs. S-Club is adopted in our CROWN Grid and the performance of S-Club is evaluated by comprehensive simulations. The results show that S-Club scheme significantly improves search performance and outperforms existing approaches. Chunming Hu is a research staff in the Institute of Advanced Computing Technology at the School of Computer Science and Engineering, Beihang University, Beijing, China. He received his B.E. and M.E. in Department of Computer Science and Engineering in Beihang University. He received the Ph.D. degree in School of Computer Science and Engineering of Beihang University, Beijing, China, 2005. His research interests include peer-to-peer and grid computing; distributed systems and software architectures. Yanmin Zhu is a Ph.D. candidate in the Department of Computer Science, Hong Kong University of Science and Technology. He received his B.S. degree in computer science from Xi’an Jiaotong University, Xi’an, China, in 2002. His research interests include grid computing, peer-to-peer networking, pervasive computing and sensor networks. He is a member of the IEEE and the IEEE Computer Society. Jinpeng Huai is a Professor and Vice President of Beihang University. He serves on the Steering Committee for Advanced Computing Technology Subject, the National High-Tech Program (863) as Chief Scientist. He is a member of the Consulting Committee of the Central Government’s Information Office, and Chairman of the Expert Committee in both the National e-Government Engineering Taskforce and the National e-Government Standard office. Dr. Huai and his colleagues are leading the key projects in e-Science of the National Science Foundation of China (NSFC) and Sino-UK. He has authored over 100 papers. His research interests include middleware, peer-to-peer (P2P), grid computing, trustworthiness and security. Yunhao Liu received his B.S. degree in Automation Department from Tsinghua University, China, in 1995, and an M.A. degree in Beijing Foreign Studies University, China, in 1997, and an M.S. and a Ph.D. degree in computer science and engineering at Michigan State University in 2003 and 2004, respectively. He is now an assistant professor in the Department of Computer Science and Engineering at Hong Kong University of Science and Technology. His research interests include peer-to-peer computing, pervasive computing, distributed systems, network security, grid computing, and high-speed networking. He is a senior member of the IEEE Computer Society. Lionel M. Ni is chair professor and head of the Computer Science and Engineering Department at Hong Kong University of Science and Technology. Lionel M. Ni received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, Indiana, in 1980. He was a professor of computer science and engineering at Michigan State University from 1981 to 2003, where he received the Distinguished Faculty Award in 1994. His research interests include parallel architectures, distributed systems, high-speed networks, and pervasive computing. A fellow of the IEEE and the IEEE Computer Society, he has chaired many professional conferences and has received a number of awards for authoring outstanding papers.  相似文献   

11.
An Attack-Finding Algorithm for Security Protocols   总被引:5,自引:1,他引:5       下载免费PDF全文
This paper proposes an automatic attack construction algorithm in order to find potential attacks on ecurity protocols.It is based on a dynamic strand space model,which enhances the original strand space model by introducing active nodes on strands so as to characterize the dynamic procedure of protocol execution.With exact causal dependency relations between messages considered in the model,this algorithm can avoid state space explo-sion caused by asynchronous composition.In order to get a finite state space,a new method called strand-added on demand is exploited,which extends a bundle in an incremental manner without requiring explicit configuration of protocol execution parameters.A finer granularity model of term structure is also introduced, in which subterms are divided into check subterms and data subterms .Moreover,data subterms can be further classified based on the compatible data subterm relation to obtain automatically the finite set of valid acceptable terms for an honest principal.In this algorithm,terms core is designed to represent the intruder‘s knowledge compactly,and forward search technology is used to simulate attack patterns easily.Using this algorithm,a new attack on the Dolve-Yao protocol can be found,which is even more harmful beeause the secret is revealed before the session terminates.  相似文献   

12.
P transducers     
We introduce in this paper four classes of P transducers: arbitrary, initial, isolated arbitrary, isolated and initial. The first two classes are universal, they can compute the same word functions as Turing machines, the latter two are incomparable with finite state sequential transducers, generalized or not. We study the effect of the composition, and show that iteration increases the power of these latter classes, also leading to a new characterization of recursively enumerable languages. The “Sevilla carpet” of a computation is defined for P transducers, giving a representation of the control part for these P transducers. Gabriel Ciobanu, Ph.D.: He has graduated from the Faculty of Mathematics, “A.I.Cuza” University of Iasi, and received his Ph.D. from the same university. He is a senior researcher at the Institute of Computer Science of the Romanian Academy. He has wide-ranging interests in computing including distributed systems and concurrency, computational methods in biology, membrane computing, and theory of programming (semantics, formal methods, logics, verification). He has published around 90 papers in computer science and mathematics, a book on programming semantics and a book on network programming. He is a co-editor of three volumes. He has visited various universities in Europe, Asia, and North America, giving lectures and invited talks. His webpage is http://www.info.uaic.ro/gabriel Gheorghe Păun, Ph.D.: He has graduated from the Faculty of Mathematics, University of Bucharest, in 1974 and received his Ph.D. from the same university in 1977. Curently he works as senior researcher in the Institute of Mathematics of the Romanian Academy, as well as a Ramon y Cajal researcher in Sevilla University, Spain. He has repeatedly visited numerous universities in Europe, Asia, and North America. His main research areas are formal language theory and its applications, computational linguistics, DNA computing, and membrane computing (a research area initiated by him). He has published over 400 research papers (collaborating with many researchers worldwide), has lectured at over 100 universities, and gave numerous invited talks at recognized international conferences. He has published 11 books in mathematics and computer science, has edited about 30 collective volumes, and also published many popular science books and books on recreational mathematics (games). He is on the editorial boards of fourteen international journals in mathematics, computer science, and linguistics, and was/is involved in the program/steering/organizing commitees for many recognized conferences and workshops. In 1997 he was elected a member of the Romanian Academy. Gheorghe Ştefănescu, Ph.D.: He received his B.Sc./M.Sc./Ph.D. degrees in Computer Science from the University of Bucharest. Currently, he is a Professor of Computer Science at the University of Bucharest and a Senior Fellow at the National University of Singapore. Previously, he was a researcher at the Institute of Mathematics of the Romanian Academy and has held visiting positions in The Netherlands, Germany, and Japan. His current research focuses on formal methods in computer science, particularly on process and network algebras, formal methods for interactive, real-time, and object-oriented systems. Some of his results may be found in his book on “Network Algebra,” Springer, 2000.  相似文献   

13.
We propose a recognition method of character-string images captured by portable digital cameras. A challenging task in character-string recognition is the segmentation of characters. In the proposed method, a hypothesis graph is used for recognition-based segmentation of the character-string images. The hypothesis graph is constructed by the subspace method, using eigenvectors as conditionally elastic templates. To obtain these templates, a generation-based approach is introduced in the training stage. Various templates are generated to cope with low-resolution. We have experimentally proved that the proposed scheme achieves high recognition performance even for low-resolution character-string images. The text was submitted by the authors in English. Hiroyuki Ishida. Received his B.S. and M.S. degrees from the Department of Information Engineering and from the Graduate School of Information Science, respectively, at Nagoya University. He is currently pursuing a Ph.D. in Information Science at Nagoya University. Ichiro Ide. Received his B.S. degree from the Department of Electronic Engineering, his M.S. degree from the Department of Information Engineering, and his Ph.D. from the Department of Electrical Engineering at the University of Tokyo. He is currently an Associate Professor in the Graduate School of Information Science at Nagoya University. Tomokazu Takahashi. Received his B.S. degree from the Department of Information Engineering at Ibaraki University, and his M.S. and Ph.D. from the Graduate School of Science and Engineering at Ibaraki University. His research interests include computer graphics and image recognition. Hiroshi Murase. Received his B.S., M.S., and Ph.D. degrees from the Graduate School of Electrical Engineering at Nagoya University. He is currently a Professor in the Graduate School of Information Science at Nagoya University. He received the Ministry Award from the Ministry of Education, Culture, Sports, Science and Technology in Japan in 2003. He is a Fellow of the IEEE.  相似文献   

14.
The simple least-significant-bit (LSB) substitution technique is the easiest way to embed secret data in the host image. To avoid image degradation of the simple LSB substitution technique, Wang et al. proposed a method using the substitution table to process image hiding. Later, Thien and Lin employed the modulus function to solve the same problem. In this paper, the proposed scheme combines the modulus function and the optimal substitution table to improve the quality of the stego-image. Experimental results show that our method can achieve better quality of the stego-image than Thien and Lin’s method does. The text was submitted by the authors in English. Chin-Shiang Chan received his BS degree in Computer Science in 1999 from the National Cheng Chi University, Taipei, Taiwan and the MS degree in Computer Science and Information Engineering in 2001 from the National Chung Cheng University, ChiaYi, Taiwan. He is currently a Ph.D. student in Computer Science and Information Engineering at the National Chung Cheng University, Chiayi, Taiwan. His research fields are image hiding and image compression. Chin-Chen Chang received his BS degree in applied mathematics in 1977 and his MS degree in computer and decision sciences in 1979, both from the National Tsing Hua University, Hsinchu, Taiwan. He received his Ph.D. in computer engineering in 1982 from the National Chiao Tung University, Hsinchu, Taiwan. During the academic years of 1980–1983, he was on the faculty of the Department of Computer Engineering at the National Chiao Tung University. From 1983–1989, he was on the faculty of the Institute of Applied Mathematics, National Chung Hsing University, Taichung, Taiwan. From 1989 to 2004, he has worked as a professor in the Institute of Computer Science and Information Engineering at National Chung Cheng University, Chiayi, Taiwan. Since 2005, he has worked as a professor in the Department of Information Engineering and Computer Science at Feng Chia University, Taichung, Taiwan. Dr. Chang is a Fellow of IEEE, a Fellow of IEE and a member of the Chinese Language Computer Society, the Chinese Institute of Engineers of the Republic of China, and the Phi Tau Phi Society of the Republic of China. His research interests include computer cryptography, data engineering, and image compression. Yu-Chen Hu received his Ph.D. degree in Computer Science and Information Engineering from the Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan in 1999. Dr. Hu is currently an assistant professor in the Department of Computer Science and Information Engineering, Providence University, Sha-Lu, Taiwan. He is a member of the SPIE society and a member of the IEEE society. He is also a member of the Phi Tau Phi Society of the Republic of China. His research interests include image and data compression, information hiding, and image processing.  相似文献   

15.
With the increasing popularity of the WWW, the main challenge in computer science has become content-based retrieval of multimedia objects. Access to multimedia objects in databases has long been limited to the information provided in manually assigned keywords. Now, with the integration of feature-detection algorithms in database systems software, content-based retrieval can be fully integrated with query processing. We describe our experimentation platform under development, making database technology available to multimedia. Our approach is based on the new notion of feature databases. Its architecture fully integrates traditional query processing and content-based retrieval techniques. Arjen P. de Vries, Ph.D.: He received his Ph.D. in Computer Science from the University of Twente in 1999, on the integration of content management in database systems. He is especially interested in the new requirements on the design of database systems to support content-based retrieval in multimedia digital libraries. He has continued to work on multimedia database systems as a postdoc at the CWI in Amsterdam as well as University of Twente. Menzo Windhouwer: He received his MSc in Computer Science and Management from the University of Amsterdam in 1997. Currently he is working in the CWI Database Research Group on his Ph.D., which is concerned with multimedia indexing and retrieval using feature grammars. Peter M.G. Apers, Ph.D.: He is a full professor in the area of databases at the University of Twente, the Netherlands. He obtained his MSc and Ph.D. at the Free University, Amsterdam, and has been a visiting researcher at the University of California, Santa Cruz and Stanford University. His research interests are query optimization in parallel and distributed database systems to support new application domains, such as multimedia applications and WWW. He has served on the program committees of major database conferences: VLDB, SIGMOD, ICDE, EDBT. In 1996 he was the chairman of the EDBT PC. In 2001 he will, for the second time, be the chairman of the European PC of the VLDB. Currently he is coordinating Editor-in-Chief of the VLDB Journal, editor of Data & Knowledge Engineering, and editor of Distributed and Parallel Databases. Martin Kersten, Ph.D.: He received his PhD in Computer Science from the Vrije Universiteit in 1985 on research in database security, whereafter he moved to CWI to establish the Database Research Group. Since 1994 he is professor at the University of Amsterdam. Currently he is heading a department involving 60 researchers in areas covering BDMS architectures, datamining, multimedia information systems, and quantum computing. In 1995 he co-founded Data Distilleries, specialized in data mining technology, and became a non-executive board member of the software company Consultdata Nederland. He has published ca. 130 scientific papers and is member of the editorial board of VLDB journal and Parallel and Distributed Systems. He acts as a reviewer for ESPRIT projects and is a trustee of the VLDB Endowment board.  相似文献   

16.
The study on database technologies, or more generally, the technologies of data and information management, is an important and active research field. Recently, many exciting results have been reported. In this fast growing field, Chinese researchers play more and more active roles. Research papers from Chinese scholars, both in China and abroad,appear in prestigious academic forums.In this paper,we, nine young Chinese researchers working in the United States, present concise surveys and report our recent progress on the selected fields that we are working on.Although the paper covers only a small number of topics and the selection of the topics is far from balanced, we hope that such an effort would attract more and more researchers,especially those in China,to enter the frontiers of database research and promote collaborations. For the obvious reason, the authors are listed alphabetically, while the sections are arranged in the order of the author list.  相似文献   

17.
We propose a novel concept of shape prior for the processing of tubular structures in 3D images. It is based on the notion of an anisotropic area energy and the corresponding geometric gradient flow. The anisotropic area functional incorporates a locally adapted template as a shape prior for tubular vessel structures consisting of elongated, ellipsoidal shape models. The gradient flow for this functional leads to an anisotropic curvature motion model, where the evolution is driven locally in direction of the considered template. The problem is formulated in a level set framework, and a stable and robust method for the identification of the local prior is presented. The resulting algorithm is able to smooth the vessels, pushing solution toward elongated cylinders with round cross sections, while bridging gaps in the underlying raw data. The implementation includes a finite-element scheme for numerical accuracy and a narrow band strategy for computational efficiency. Oliver Nemitz received his Diploma in mathematics from the university of Duisburg, Germany in 2003. Then he started to work on his Ph.D. thesis in Duisburg. Since 2005 he is continuing the work on his Ph.D. project at the Institute for Numerical Simulation at Bonn University. His Ph.D. subject is fast algorithms for image manipulation in 3d, using PDE’s, variational methods, and level set methods. Martin Rumpf received his Ph.D. in mathematics from Bonn University in 1992. He held a postdoctoral research position at Freiburg University. Between 1996 and 2001, he was an associate professor at Bonn University and from 2001 until 2004 full professor at Duisburg University. Since 2004 he is now full professor for numerical mathematics and scientific computing at Bonn University. His research interests are in numerical methods for nonlinear partial differential equations, geometric evolution problems, calculus of variations, adaptive finite element methods, image and surface processing. Tolga Tasdizen received his B.S. degree in Electrical Engineering from Bogazici University, Istanbul in 1995. He received the M.S. and Ph.D. degrees in Engineering from Brown University in 1997 and 2001. From 2001 to 2004 he was a postdoctoral research associate with the Scientific Computing and Imaging Institute at the University of Utah. Since 2004 he has been with the School of Computing at the University of Utah as a research assistant professor. He also holds an adjunct assistant professor position with the Department of Neurology and the Center for Alzheimer’s Care, Imaging and Research, and a research scientist position with the Scientific Computing and Imaging Institute at the University of Utah. Ross Whitaker received his B.S. degree in Electrical Engineering and Computer Science from Princeton University in 1986, earning Summa Cum Laude. From 1986 to 1988 he worked for the Boston Consulting Group, entering the University of North Carolina at Chapel Hill in 1989. At UNC he received the Alumni Scholarship Award, and completed his Ph.D. in Computer Science in 1994. From 1994–1996 he worked at the European Computer-Industry Research Centre in Munich Germany as a research scientist in the User Interaction and Visualization Group. From 1996–2000 he was an Assistant Professor in the Department of Electrical Engineering at the University of Tennessee. He is now an Associate Professor at the University of Utah in the College of Computing and the Scientific Computing and Imaging Institute.  相似文献   

18.
Image categorization is undoubtedly one of the most recent and challenging problems faced in Computer Vision. The scientific literature is plenty of methods more or less efficient and dedicated to a specific class of images; further, commercial systems are also going to be advertised in the market. Nowadays, additional data can also be attached to the images, enriching its semantic interpretation beyond the pure appearance. This is the case of geo-location data that contain information about the geographical place where an image has been acquired. This data allow, if not require, a different management of the images, for instance, to the purpose of easy retrieval from a repository, or of identifying the geographical place of an unknown picture, given a geo-referenced image repository. This paper constitutes a first step in this sense, presenting a method for geo-referenced image categorization, and for the recognition of the geographical location of an image without such information available. The solutions presented are based on robust pattern recognition techniques, such as the probabilistic Latent Semantic Analysis, the Mean Shift clustering and the Support Vector Machines. Experiments have been carried out on a couple of geographical image databases: results are actually very promising, opening new interesting challenges and applications in this research field. The article is published in the original. Marco Cristani received the Laurea degree in 2002 and the Ph.D. degree in 2006, both in Computer Science from the University of Verona, Verona, Italy. He was a visiting Ph.D. student at the Computer Vision Lab, Institute for Robotics and Intelligent Systems School of Engineering (IRIS), University of Southern California, Los Angeles, in 2004–2005. He is now an Assistant Professor with the Department of Computer Science, University of Verona, working with the Vision, Image Processing and Sounds (VIPS) Lab. His main research interests include statistical pattern recognition, generative modeling via graphical models, and non-parametric data fusion techniques, with applications on surveillance, segmentation and image and video retrieval. He is the author of several papers in the above subjects and a reviewer for several international conferences and journals. Alessandro Perina received the BD and MS degrees in Information Technologies and Intelligent and Multimedia Systems from the University of Verona, Verona, Italy, in 2004 and 2006, respectively. He is currently a Ph.D. candidate in the Computer Science Department at the University of Verona. His research interests include computer vision, machine learning and pattern recognition. He is a student member of the IEEE. Umberto Castellani is Ricercatore (i.e., Research Assistant) of Department of Computer Science at University of Verona. He received his Dottorato di Ricerca (Ph.D.) in Computer Science from the University of Verona in 2003 working on 3D data modelling and reconstruction. During his Ph.D., he had been Visiting Research Fellow at the Machine Vision Unit of the Edinburgh University, in 2001. In 2007 he has been an Invited Professor for two months at the LASMEA laboratory in Clermont-Ferrand, France. In 2008, he has been Visiting Researcher for two months at the PRIP laboratory of the Michigan State University (USA). His main research interests concern the processing of 3D data coming from different acquisition systems such as 3D models from 3D scanners, acoustic images for the vision in underwater environment, and MRI scans for biomedical applications. The addressed methodologies are focused on the intersections among Machine Learning, Computer Vision and Computer Graphics. Vittorio Murino received the Laurea degree in electronic engineering in 1989 and the Ph.D. degree in electronic engineering and computer science in 1993, both from the University of Genoa, Genoa, Italy. He is a Full Professor with the Department of Computer Science, University of Verona. From 1993 to 1995, he was a Postdoctoral Fellow in the Signal Processing and Understanding Group, Department of Biophysical and electronic Engineering, University of Genoa, where he supervised of research activities on image processing for object recognition and pattern classification in underwater environments. From 1995 to 1998, he was an Assistant Professor of the Department of Mathematics and Computer Science, University of Udine, Udine, Italy. Since 1998, he has been with the University of Verona, where he founded and is responsible for the Vision, Image processing, and Sound (VIPS) Laboratory. He is scientifically responsible for several national and European projects and is an Evaluator for the European Commission of research project proposals related to different scientific programmes and frameworks. His main research interests include computer vision and pattern recognition, probabilistic techniques for image and video processing, and methods for integrating graphics and vision. He is author or co-author of more than 150 papers published in refereed journals and international conferences. Dr. Murino is a referee for several international journals, a member of the technical committees for several conferences (ECCV, ICPR, ICIP), and a member of the editorial board of Pattern Recognition, IEEE Transactions on Systems, Man, and Cybernetics, Pattern Analysis and Applications and Electronic Letters on Computer Vision and Image Analysis (ELCVIA). He was the promotor and Guest Editor off our special issues of Pattern Recognition and is a Fellow of the IAPR.  相似文献   

19.
The present contribution describes a potential application of Grid Computing in Bioinformatics. High resolution structure determination of biological specimens is critical in BioSciences to understanding the biological function. The problem is computational intensive. Distributed and Grid Computing are thus becoming essential. This contribution analyzes the use of Grid Computing and its potential benefits in the field of electron microscope tomography of biological specimens. Jose-Jesus Fernandez, Ph.D.: He received his M.Sc. and Ph.D. degrees in Computer Science from the University of Granada, Spain, in 1992 and 1997, respectively. He was a Ph.D. student at the Bio-Computing unit of the National Center for BioTechnology (CNB) from the Spanish National Council of Scientific Research (CSIC), Madrid, Spain. He became an Assistant Professor in 1997 and, subsequently, Associate Professor in 2000 in Computer Architecture at the University of Almeria, Spain. He is a member of the supercomputing-algorithms research group. His research interests include high performance computing (HPC), image processing and tomography. Jose-Roman Bilbao-Castro: He received his M.Sc. degree in Computer Science from the University of Almeria in 2001. He is currently a Ph.D. student at the BioComputing unit of the CNB (CSIC) through a Ph.D. CSIC-grant in conjuction with Dept. Computer Architecture at the University of Malaga (Spain). His current research interestsinclude tomography, HPC and distributed and grid computing. Roberto Marabini, Ph.D.: He received the M.Sc. (1989) and Ph.D. (1995) degrees in Physics from the University Autonoma de Madrid (UAM) and University of Santiago de Compostela, respectively. He was a Ph.D. student at the BioComputing Unit at the CNB (CSIC). He worked at the University of Pennsylvania and the City University of New York from 1998 to 2002. At present he is an Associate Professor at the UAM. His current research interests include inverse problems, image processing and HPC. Jose-Maria Carazo, Ph.D.: He received the M.Sc. degree from the Granada University, Spain, in 1981, and got his Ph.D. in Molecular Biology at the UAM in 1984. He left for Albany, NY, in 1986, coming back to Madrid in 1989 to set up the BioComputing Unit of the CNB (CSIC). He was involved in the Spanish Ministry of Science and Technology as Deputy General Director for Research Planning. Currently, he keeps engaged in his activities at the CNB, the Scientific Park of Madrid and Integromics S.L. Immaculada Garcia, Ph.D.: She received her B.Sc. (1977) and Ph.D. (1986) degrees in Physics from the Complutense University of Madrid and University of Santiago de Compostela, respectively. From 1977 to 1987 she was an Assistant professor at the University of Granada, from 1987 to 1996 Associate professor at the University of Almeria and since 1997 she is a Full Professor and head of Dept. Computer Architecture. She is head of the supercomputing-algorithms research group. Her research interest lies in HPC for irregular problems related to image processing, global optimization and matrix computation.  相似文献   

20.
It is hard to have knowledge including all events which may have caused observed events. This makes it difficult to infer significant causes of observed events. However, unexpected relations detected between known events by a computer suggest unknown events to humans, being combined with the vast human knowledge acquired by rich experience. This paper presents a method to have a computer express “unknown” hidden causes, i.e. not included in the given knowledge. The inference method of the computer, for inferring known causes of observed time-series events, is Cost-based Cooperation of Multi-Abducers (CCMA) here aiming at detecting unexpectedly strong co-occurrences among known events. The detected relations are expressed to user, which makes significant unknown causal events easily understood. The empirical results encourages that the presented method helps in discovering significant unknown events. Yukio Ohsawa, Ph.D.: He is an Associate Professor in the Graduate School of Systems Management, University of Tsukuba. He obtained his bachelors, masters, and Ph.D. degrees in Engineering from the University of Tokyo in 1990, 1992 and 1995 respectively. He was a research associate in Osaka University from 1995 to 1999. His research interests are in discovering signs of future events affecting human life, from data, based on his background of artificial intelligence. He received the Paper Award from the Japanese Society of Artificial Intelligence in 1999 and some awards for conference papers. He has served on program commitees of several conferences and workshops on AI and agents, currently chairing Multi-agent and Cooperative Computing workshops (MACC99). Masahiko Yachida, Ph.D.: He is a professor at the Dept. of Systems Engineering of Osaka University since 1993. He obtained his B. E., M.Sc in electrical engineering and Ph.D. in control engineering from Osaka University in 1969, 1971, and 1976 respectively. He became a professor of the Dept. of Information and Computer Science of the same university in 1990, and moved to the current department as a professor. He was a research fellow at the Fachbereich Informatik, Hamburg University from 1981 to 1982, and a CDC professor at the Dept. of Computer Science, University of Minessota in 1983. He received several prizes including Ohkawa Publishing Prize, and is presently a Chairman of Technical Committee on Pattern Recognition & Media Understanding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号