首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract This paper presents a wide-stopband bandpass filter (BPF) based on mixed coupling of the composite right/left handed transmission line (CRLH-TL). First the CRLH-TL resonator is introduced and analyzed. Then mixed coupling (Both electric coupling path and magnetic coupling path exist) of the novel resonator is explained. Based on the structural features of the CRLH-TL resonators, this coupling path can generate an additional transmission zero near passband without increasing the overall size of the filter. Then, good selectivity of the proposed BPF can be obtained. Meanwhile, in order to get a wide stopband, two open stubs are employed to suppress harmonic response of the CRLH-TL resonator. The filter is developed and analyzed based on microwave network theory and equivalent circuit method. The proposed BPF has been designed, fabricated, and measured. The measured results agree with the predicted ones closely.  相似文献   

2.
The broadband bandpass filter (BPF) designed with low-temperature co-fired ceramic technology has been proposed in this letter. By adopting a quadruple resonator, the broadband BPF with compact size can be fabricated. A quadruple resonator with metal-insulator-metal capacitors is employed to make inductive and capacitive couplings. The coupling scheme can create two transmission zeros at both sides of passband skirts by appropriately selecting the coupling coefficient. The center frequency and bandwidth ratio of this filter are 3.875 GHz and 50%, respectively. This filter can increase the sensitivity and linearity in the wireless communication system as well  相似文献   

3.
In this letter, a novel microstrip bandpass filter (BPF) with asymmetric resonators is presented. With the asymmetric structure and capacitively loaded coupling, a wide bandwidth with sufficient rejection level can be achieved easily. A full-wave electromagnetic simulator IE3D is used, and the prototype of the BPF is fabricated and measured. Comparisons of simulated results and experimental data are shown; moreover, good match validates the proposed filter.  相似文献   

4.
We proposed a fractal-based dual-mode bandpass filter (BPF) using a standard CMOS process for application of 60 GHz WirelessHD system. We first investigated the effect of coupling feedlines of I/O ports set at different layer of M3 and M4 layer on the transmission loss of the resonator, and verified the nature coupling of fractal-based dual-mode filter. Experimental result shows that the designed filter with a fractional-bandwidth (FBW) of 23%, an insertion loss about 7 dB and return loss larger than 10 dB. Additionally, two transmission zeros are appeared at the passband edges, thus much improve the selectivity of the proposed CMOS BPF. The result indicates that fractal-based structure is feasible and can meet the requirement in the mm-wave application.  相似文献   

5.
To realize the feature of small size and high selectivity, a microstrip miniature fractal quasi-elliptic bandpass filter (BPF) with two transmission zeros (TZs) near each skirt is investigated in this paper. The TZs are created by source-load coupling between the input and output E-shaped feeding structures. By using a dual-mode Minkowski fractal shorted stub loaded open-loop resonator, the proposed BPF achieved a size reduction of 97.5% compared with the conventional square dual-mode loop BPF. Even mode analysis is adopted to characterize the Minkowski structure. The frequency responses of the current BPF were simulated and measured with good agreement.  相似文献   

6.
7.
In this paper, a novel Bandpass Filter (BPF) combining microstrip parallel-coupled with end-coupled resonators is proposed. The filter not only allows the cross coupling to be realized but also makes itself compactness. At 35GHz, such a filter is designed and experimental results are discussed.  相似文献   

8.
A novel ultra-wideband bandpass filter (BPF) is presented using a back-to-back microstrip-to-coplanar waveguide (CPW) transition employed as the broadband balun structure in this letter. The proposed BPF is based on the electromagnetic coupling between open-circuited microstrip line and short-circuited CPW. The equivalent circuit of half of the filter is used to calculate the input impedance. The broadband microstip-to-CPW transition is designed at the center frequency of 6.85 GHz. The simulated and measured results are shown in this letter.  相似文献   

9.
A novel wideband bandpass filter (BPF) using a cross-shaped microstrip multiple-mode resonator (MMR) is presented in the letter. The MMR is composed of a section of open-ended microstrip-line and a pair of short-ended stubs. Its three resonant modes are used to construct the passband of the proposed BPF. And two coplanar waveguides are used as the input/output transmission-lines to improve the coupling between the MMR and input/output transmission-lines. The filter has been investigated numerically and experimentally. Both simulated and measured results show that the filter has a good performance, including controllable bandwidth from 66% to 114%, low insertion loss (lower than 0.78 dB), and a small group delay variation.  相似文献   

10.
A miniaturized dual-band bandpass filter (BPF) using stepped impedance resonator (SIR) and defected ground structure (DGS) is presented. In order to get two desired passbands, two different transmission paths and source–load cross coupling have been implemented. One path is the SIR, and the other is the DGS. Meanwhile, it is easy to obtain good frequency selectivity by introducing several transmission zeros. The coupling scheme and current distributions are applied to demonstrate the flexible design approach. A dual-band BPF is designed, simulated, and fabricated to demonstrate the performance of the proposed dual-band filter. The measured results show that the fabricated dual-band BPF has two passbands centered at 2.41 and 3.52 GHz with the fractional bandwidth of 5.8 and 7.7%, respectively. The measured insertion loss is about 2 dB and 2.2 dB at the lower and upper passbands. The measured results show good agreement with the simulated ones.  相似文献   

11.
针对超宽带(UWB)系统易受无线网络信号干扰及传统的超宽带带通滤波器阻带较窄,不能有效抑制谐波的问题,提出了一种新型的UWB带通滤波器,该滤波器由两级交指梳状耦合谐振器级联组成,通过增加耦合指的个数来实现陷波特性,然后在两个交指谐振器的中间添加一个槽线锥形谐振器,使该滤波器具有抑制高次谐波特性,达到拓宽高阻带的效果,同时由于槽线谐振器的加入,陷波频段的抑制电平进一步提高.实验结果证明,所设计的滤波器既能保证3.1~10.6 GHz频段内的插入损耗小于3 dB,陷波频段为5.7~5.8 GHz,陷波频段的抑制电平高达-43 dB,同时又能拓宽高频阻带.  相似文献   

12.
A compact ultra-wideband (UWB) bandpass filter (BPF) with notched band has been proposed and implemented in this letter. H-shaped slot is studied and adopted to tighten the coupling of inter-digital capacitor in order to improve the BPF's performance. Three pairs of tapered defected ground structures (DGS) are formed to assign their transmission zeros towards the out of band signal, thereby suppressing the spurious passband. Combining these two structures we obtain a small sized UWB BPF. Meander line slot is developed to reject the undesired wireless local-area network (WLAN) radio signals. An experimental UWB filter with notched band was fabricated with 35% less length as compared to an embedded open-circuited stub. The measured BPF insertion loss is less than 1.0 dB throughout the pass band of 2.8 to 10.8 GHz, the variation of group delay less than 0.20 ns in this band except for the notched band, and a wide stopband bandwidth with 20 dB attenuation up to at least 20.0 GHz.  相似文献   

13.
This letter proposes an ultra wideband (UWB) bandpass filter (BPF) based on embedded stepped impedance resonators (SIRs). In this study, broad side coupled patches and high impedance microstrip lines are adopted as quasi-lumped elements for realizing the coupling between adjacent SIRs, which are used to suppress stopband harmonic response. An eight-pole UWB BPF is developed from lump-element bandpass prototype and verified by full-wave simulation. The proposed filter is fabricated using multilayer liquid crystal polymer (LCP) process and measured using vector network analyzer. Good agreement between simulated and measured response is observed. The measurement results show that the fabricated filter has a low insertion loss of 0.18 dB at center frequency 6.05 GHz, an ultra wide fractional bandwidth of 127.3% and excellent stopband rejection level higher than 32.01 dB from 10.9 to 18.0 GHz.   相似文献   

14.
This letter presents a dual-band combline bandpass filter (BPF) loaded by lumped series resonators. The proposed filter configuration can easily generate two desired passbands by controlling the resonant frequencies of the comblines as well as the series resonators. Furthermore, the skirt frequency characteristics between the two passbands are improved by transmission zeros introduced by source-load coupling via a lumped element capacitor. Two-pole dual-BPF with center frequencies of 1.2 and 1.54 GHz is designed and the measured results agree well with simulated results.  相似文献   

15.
Ma  K.-X. Ma  J.-G. Do  M.A. Yeo  K.S. 《Electronics letters》2005,41(15):846-848
A novel two-order bandpass filter (BPF) is proposed. The parallel coupling paths as well as similar zero point generation mechanism for the fundamental frequency and the first spurious frequency give the filter three controllable finite zero points in the stopband without adding any extra elements. Good skirt selectivity and controllable stopband characteristics can be achieved simultaneously.  相似文献   

16.
单槽双频微波带通滤波器设计与实现   总被引:1,自引:1,他引:0  
在方形贴片上采用单槽线代替相互正交双槽线的方法设计出一款结构简单、紧凑的双频段带通滤波器。详细讨论了滤波器结构参数对滤波器性能的影响,并以2.45/5.2GHz双通带滤波器的设计为例,通过仿真优化得到了各结构参数,制作了相应的样品。测试结果表明:该滤波器在2.45GHz通带内回波损耗为20dB,通带内最小插损为0.9dB,相对带宽为10%;5.2GHz通带内回波损耗33.6dB,通带内最小插损为0.37dB,相对带宽为13.4%,其总体尺寸比文献中正交双槽线结构的滤波器缩小48%。  相似文献   

17.
In this letter, a T-shaped microstrip feeding arrangement is proposed to design wideband bandpass filter (BPF) using shorted slot-line resonators. This feed line produces frequency selective external coupling which is utilized to suppress unwanted harmonics. Up to sixth order harmonics are suppressed. Other advantages are low passband group delay variation, ease of fabrication, low insertion loss (IL), and compact size. A fabricated BPF of fractional bandwidth 56.3% at midband frequency 2.3 GHz has a maximum IL of 1.2 dB in its passband and 30-dB upper stopband extends over 11.53 GHz  相似文献   

18.
An ultra-wideband (UWB: 3.1-10.6 GHz) bandpass filter (BPF) on coplanar waveguide (CPW) is proposed, designed and implemented. A nonuniform CPW multiple-mode resonator with short-circuited ends is constructed and its first three resonant modes are properly allocated around the lower-end, center and higher-end of the specified UWB band. This CPW resonator is then driven at two ends by two parallel-coupled CPW lines with dispersive inductive coupling degree. By properly reallocating the enhanced coupling peak toward the UWB's center, a five-pole CPW BPF with one full-wavelength can be eventually constituted. Its UWB bandpass performance is characterized and optimized on the basis of a simple transmission-line network. Predicted results are confirmed by experiment. Measured results achieve the insertion loss <1.5dB and group delay variation <0.35ns in the realized 3.3 to 10.4GHz UWB passband.  相似文献   

19.
This letter presents a new design for the radio frequency low-noise bandpass filter (BPF) using the active device reduction technique. In a conventional active BPF based on the negative resistance method, the number of active devices depends on the order of the BPF. In the proposed design, the number of active devices is reduced in half, using the suggested new technique. Compared with the conventional active BPF, the proposed one shows better noise figure and consumes less power. We apply this technique to the design of the second order BPF and verify that the measured results exhibit good active filter performances  相似文献   

20.
Yang  G.M. Jin  R.H. Geng  J.P. 《Electronics letters》2006,42(25):1461-1463
A compact planar microstrip UWB bandpass filter is proposed. It is realised by cascading a lowpass filter and a highpass filter. A transmission line with U-shaped slots coupled with two DGS units on the back of the circuit board has the characteristic of highpass, while a periodic uniform DGS array has the characteristic of lowpass. Combining these two structures, a new UWB bandpass filter (BPF) is fabricated and measured. Measured results show that the proposed BPF has wide bandwidth from 3.0 to 10.9 GHz, all the measured return loss less than 13 dB in the passband. The BPF achieves a wide stopband with 18 dB attenuation up to 18.0 GHz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号