首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
进行了氨基羟基脲(HSC)的硝酸水溶液对30%(体积分数,下同)磷酸三丁酯(TBP)/煤油中高浓度四价钚(Pu(Ⅳ))的还原反萃行为研究,并采用试管串级实验对HSC在钚净化浓缩循环中反萃段工艺进行了验证。结果表明:HSC能有效地实现有机相中高浓Pu(Ⅳ)的反萃;采用13级逆流反萃试管串级实验(还原反萃段10级,补充萃取段3级),对PUREX流程钚净化浓缩反萃段工艺进行了验证,在相比(2BF∶2BX∶2BS)为1∶0.25∶0.15的条件下,Pu的收率为99.99%;钚中去铀的分离因子SF(U/Pu)=3.7×105。HSC作为还原反萃剂,可以实现30%TBP/煤油中高浓度Pu(Ⅳ)的有效反萃,在钚净化浓缩循环工艺中有良好的应用前景。  相似文献   

2.
采用氨基羟基脲(HSC)的硝酸水溶液研究了从30%(体积分数,下同)TBP/煤油中还原反萃高浓度四价钚(Pu(Ⅳ))的性能,并与羟胺-肼(HAN-HN)、N,N-二甲基羟胺-单甲基肼(DMHAN-MMH)在钚净化浓缩循环中反萃行为进行了对比。结果表明:在一定HSC浓度下,适当延长相接触时间、减小相比(o/a)、降低酸度和提高温度,均有利于Pu(Ⅳ)的还原反萃。HSC作为还原反萃剂,可以有效实现30%TBP/煤油中高浓钚的反萃,反萃效果较其它几种还原剂更好,有望在先进二循环流程的钚净化浓缩工艺中得到应用。  相似文献   

3.
研究了氨基羟基脲(HSC)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了HSC浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加氨基羟基脲的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段10级,补充萃取段6级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U的收率大于99.99%,Pu的收率大于99.99%;铀中去钚的分离因数SFPu/U=2.8×104;钚中去铀的分离因数SFU/Pu=5.9×104。HSC作为还原反萃取剂,可有效实现铀钚分离。  相似文献   

4.
硝酸羟胺还原反萃高浓度钚   总被引:2,自引:0,他引:2  
对硝酸羟胺(HAN)从30%TBP/煤油中还原反萃高浓度Pu(Ⅳ)的影响因素进行了研究。结果表明:延长两相接触时间、降低酸度、升高温度均有利于Pu(Ⅳ)的还原反萃;增大硝酸羟胺浓度虽然也有利于Pu(Ⅳ)的还原反萃,但是当HAN浓度大于0.4mol/L后,反萃率增加不明显;增加肼的浓度也有利于Pu(Ⅳ)的还原反萃,但当肼浓度大于0.2mol/L后,Pu(Ⅳ)的反萃率随肼浓度增加而降低;溶液中硝酸根浓度对Pu(Ⅳ)反萃率的影响明显;随着钚浓度增加,反萃率降低。钚在水相和有机相的分配对HAN还原反萃高浓度钚有显著影响。  相似文献   

5.
镎的提取和分离是国际后处理领域重点关注的研究课题之一。在Purex流程中,硝酸肼常被用来作为亚硝酸的清扫剂,此外,由于硝酸肼对Np(VI)和Pu(IV)的氧化还原反应具有选择性,理论上可以利用其反应速率上的差异来实现镎与铀钚的分离。为探索硝酸肼分离镎/钚工艺提供可行性,本文采用单级萃取设备研究了硝酸肼还原反萃Np和Pu的过程。通过研究硝酸浓度、硝酸肼浓度和反应温度对还原反萃过程的影响,确定了Np(VI)和Pu(IV)反萃动力学方程和表现活化能。进一步通过动力学方程得出硝酸肼还原反萃Np(VI)和Pu(IV)的半反应时间,并对Np(VI)/Pu(IV)分离过程的工艺进行了初步探索。  相似文献   

6.
为了进一步优化Purex流程,研究了甲醛肟(FO)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了FO浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)的还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加甲醛肟的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段12级,补充萃取段4级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U和Pu 的回收率均大于99.99%;铀中去钚的分离因子SF(Pu/U)=1.0×104;钚中去铀的分离因子SF(U/Pu)=8.3×104。FO作为新型络合 还原反萃取剂,可有效实现铀钚分离。  相似文献   

7.
镎的提取和分离是后处理领域重点关注的研究课题之一。甲基肼作为一种有机无盐试剂,其还原Np(Ⅵ)的速率快于还原Pu(Ⅳ)的速率,理论上可以利用其反应速率上的差异来实现镎与钚的分离。为了探索甲基肼还原反萃分离镎、钚的可行性,本文采用单级萃取池研究了甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)的过程。通过考察还原剂浓度、硝酸浓度以及反应温度和搅拌速率等条件对甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)过程的影响,确定了Np(Ⅵ)和Pu(Ⅳ)反萃动力学方程和表观活化能。通过所得的动力学方程得出甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)的半反应时间,并对Np(Ⅵ)和Pu(Ⅳ)分离过程的工艺进行了初步探索。  相似文献   

8.
N,N-乙基,羟乙基羟胺在PUREX流程铀钚分离中的应用   总被引:2,自引:0,他引:2  
为了解N,N-乙基,羟乙基羟胺(EHEH)在PUREX流程铀钚分离中的作用,研究了EHEH对Pu(Ⅳ)的单级反萃取行为及其影响因素。结果表明,EHEH能够迅速地将有机相中的Pu(Ⅳ)还原反萃入水相,相比(o/a)为1∶1,接触时间5s时,钚的反萃取率接近99%;相比(o/a)为4∶1时,5s内钚的反萃取率可达到80%,相比增大,Pu的反萃取率降低。低酸、升温和提高EHEH浓度有利于钚的还原反萃取。采用14级逆流串级反萃取实验(还原反萃段8级,补充萃取段6级),模拟PUREX流程1B槽U/Pu分离工艺,在相比(1BX∶1BF∶1BS)为1∶4∶1的条件下,铀的收率大于99.999%,Pu的收率大于99.99%;铀中去钚的分离因数α(Pu/U)=1.1×104;钚中去铀的分离因数α(U/Pu)=3.2×105。EHEH作为还原反萃取剂,可以有效实现铀钚分离。  相似文献   

9.
N,N-二甲基羟胺对Pu(Ⅳ)的还原反萃和相应的计算机模型   总被引:2,自引:1,他引:1  
研究了N,N-二甲基羟胺(DMHAN)的HNO3溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃行为,考察了N,N-二甲基羟胺浓度、HNO3浓度、温度以及两相接触时间对Pu(Ⅳ)反萃率的影响.结果表明:延长相接触时间能显著提高钚的反萃率;增加HNO3浓度、加大DMHAN的用量、升高温度均能加快钚的反萃速率,但当相接触时间超出一定范围时,这些因素都不能显著增加钚的反萃率.编写了DMHAN单级反萃Pu(Ⅳ)的计算机模拟程序,程序计算值与实验值在一定范围内符合良好.  相似文献   

10.
研究了U(Ⅳ)在分离的有机相(30%TBP-煤油)中、在两相振荡混合和逆流萃取过程中的稳定性。通过单级反萃实验研究了有机相中钚浓度、铀浓度,反萃剂的酸度和肼浓度,U(Ⅳ)用量(M_(u(Ⅳ))/M_(Pu)对钚反萃率的影响。通过串级实验研究了在1B槽工艺条件下,M_(u(Ⅳ))/M_(Pu)和U(Ⅳ)加入位置,反萃剂酸度和相比等条件的变化对铀钚分离的影响。给出了铀和钚的净化系数。  相似文献   

11.
正1概述钚还原反萃工艺单元(1B、2B)计算机模拟软件研制项目(乏燃料后处理科研专项BG1700303,简称软件研制项目)目的是开展涉及氧化还原反应的溶剂萃取模型建立和数学算法研究,掌握对钚还原反萃过程动态模拟的技术,最终分别形成铀钚分离工艺段(1B、1BXX)和钚纯化工艺段(2A、2B、2BXX)模拟计算软件。  相似文献   

12.
采用磷酸三丁酯(TBP)溶剂萃取法对从辐照镎靶溶解液中提取分离钚的可行性进行了研究。从料液制备、流程设计两个方面研究了Pu(Ⅳ)-Np(Ⅳ)组合作为萃取价态组合的可能性。研究了1,1-二甲基肼(UDMH)还原-亚硝酸钠氧化两步法将镎、钚控制在Pu(Ⅳ)-Np(Ⅳ)的方法。结果表明,99.9%以上Pu(Ⅳ)-99.5%以上Np(Ⅳ)在4 h内能够保持稳定。基于此,设计了从辐照镎靶溶解液中提取分离钚的萃取流程,并用串级实验进行了验证:1A中镎的回收率为99.5%;1B中镎的反萃率为0.8%,钚的反萃率为99.9%;1C中镎的反萃率为99.5%。结果表明,采用Np(Ⅳ)-Pu(Ⅳ)的价态组合进料,基本可实现镎钚的分离,但料液中Np(Ⅳ)-Pu(Ⅳ)价态的长时间稳定性及TBP对Np(Ⅳ)萃取能力弱等问题将影响该工艺的实际应用。  相似文献   

13.
N,N—二甲基羟胺对Pu(Ⅳ)的还原反萃和相应计算机模型   总被引:2,自引:0,他引:2  
研究了N,N-二甲基羟胺(DMHAN)的HNO3溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃行为,考察了N,N-二甲基羟胺浓度、HNO3浓度、温度以及两相接触时间对Pu(Ⅳ)反萃率的影响。结果表明:延长相接触时间能显著提高钚的反萃率;增加HNO3浓度、加大DMHAN的用量、升高温度均能加快钚的反萃速率,但当相接触时间超出一定范围时,这些因素都不能显著增加钚的反萃率。编写了DMHAN单级反萃Pu(Ⅳ)的计算机模拟程序,程序计算值与实验值在一定范围内符合良好。  相似文献   

14.
采用可控温的单级萃取装置,对羟胺还原反萃取钚的工艺条件进行了优化。实验表明,硝酸肼能够将少量Pu(Ⅳ)还原反萃取到水相,但是当硝酸肼浓度较高时,硝酸肼则表现出盐析效应,抑制钚的还原反萃取;对于钚还原反萃取工艺来说,当保持进料中羟胺与钚的摩尔数之比为定值时(在50℃时n (HAN)/ n (Pu)=2~3较为适宜),增大还原剂流量能够提高钚的收率,但同时会降低钚的浓缩倍数;温度升高时,硝酸氧化Pu(Ⅲ)的反应速率加快,使得钚在有机相中的浓度有所升高;当溶液中离子强度较高时,在盐析效应的作用下,Pu(Ⅲ)的分配比随离子强度的提高而升高,导致钚在有机相中的浓度上升。  相似文献   

15.
PUREX流程为当前后处理工业的主流流程,其计算机模拟研究为研究热点。国外一些国家已进行全流程模拟计算,能够开展工艺条件分析和工艺优化工作,具有重要的应用价值。铀钚分离工艺单元(1B)和钚反萃单元(2B)是PUREX流程的重要环节,二者计算机模拟的基础为钚的还原反萃单元模型。本文总结了国外PUREX流程计算模拟程序中的钚还原反萃模型的研究进展,重点对模型的建立和算法做了介绍。  相似文献   

16.
本文研究了用二—(2—乙基己基)磷酸(HDEHP)从硝酸溶液中萃取Pu(Ⅳ)时影响分配系数的几个因素。初步讨论了HDEHP萃取Pu(Ⅳ)的萃取机理和萃合物的组成,研究了金属盐类和氟离子对HDEHP萃取Pu(Ⅳ)的影响和用草酸从HDEHP中反萃Pu。最后,模拟工艺料液测定了HDEHP萃取Pu(Ⅳ)的收率,Pu和Am(超钚元素代表)、Eu(镧系元素代表)的分离系数及主要裂变产物的分配系数,推荐了从堆照靶子中提取钚的工艺条件。  相似文献   

17.
为了解正丁醛在还原反萃分离铀、钚、镎过程中的作用,以正丁醛为还原剂,进行了硝酸水溶液反萃含U(Ⅵ)、Np(Ⅵ)或U(Ⅵ)、Np(Ⅵ)、Pu(Ⅳ)的TBP/煤油中Np的实验研究,测定了串级实验时Np在各萃取器中的分布,讨论了正丁醛、镎、铀、硝酸浓度、相比等对镎在萃取器中分布的影响.单级实验结果表明,正丁醛的加入和延长正丁醛与镎的相互作用时间,有利于从有机相中反萃镎;正丁醛的加入对铀、钚分配比的影响不大;但铀浓度增加会增加镎的反萃.串级实验结果表明,镎在1BP中的比例小于10%;第二级加入正丁醛时,正丁醛和镎在各级的分布较合理,能兼顾镎的去污与反萃.为了减少铀的损失,需要采用较高的硝酸浓度;在1BW中出现少量白色沉淀.  相似文献   

18.
正Purex流程中铀钚分离工艺单元(1B)是整个流程的分水岭,其运行工况对后续的工艺单元有重要的影响,铀钚分离工艺通过使用合适的还原剂将Pu(Ⅳ)还原成为Pu(Ⅲ),因为Pu(Ⅲ)在有机相(30%TBP/煤油)和水相中的  相似文献   

19.
为了解双羟基脲(DHU)在Purex流程Pu纯化循环应用的可行性,通过单级反萃实验研究了两相接触时间、有机相钚浓度、水相酸度及DHU浓度、相比等因素对Pu(Ⅳ)单级反萃率的影响。实验结果表明,在15℃下、接触时间≥1min、水相酸度≤0.4mol/L、还原剂浓度≥0.4mol/L、相比≤4:1时,对含12g/LPu0.2mol/L硝酸的有机相进行还原反萃,其反萃率≥87%。同时,反萃率随有机相中Pu(Ⅳ)或水相中Pu(III)浓度的提高而降低。  相似文献   

20.
正采用U(Ⅳ)为还原剂,研究了30%TBP/正十二烷中Pu(Ⅳ)的单级还原反萃取行为,考察了相接触时间、还原剂浓度、酸度、支持还原剂浓度对Pu(Ⅳ)反萃率的影响。单级反萃实验在玻璃离心管中进行,将有机相料液和U(Ⅳ)的还原反萃液按照1∶1相比加入离心管中,在室温下振荡器震荡至预定时间,快速离心分相,分相后分别取有机  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号