首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electromigration-induced failures in integrated circuits have been intensively studied recently; however, electromigration effects upon interfacial reactions have not been addressed. These electromigration effects in the Sn/Cu and Sn/Ni systems were investigated in this study by analyzing their reaction couples annealed at 200°C with and without the passage of electric current. The intermetallics formed were ε-(Cu3Sn) and η-(Cu6Sn5) phases in the Sn/Cu couples and Ni3Sn4 phase in the Sn/Ni couples. The same intermetallics were formed in the two types of couples with and without the passage of electric current. The thickness of the reaction layers was about the same in the two types of couples of the Sn/Cu system. In the Sn/Ni system, the growth of the intermetallic compound was enhanced when the flow direction of electrons and that of diffusion of Sn were the same. But the effect became inhibiting if the directions of these two were opposite. Theoretical calculation indicated that in the Sn/Ni system, the electromigration effect was significant and was 28% of the chemical potential effect for the Sn element flux when the Ni3Sn4 layer was 10 μm thick. For the Sn and Cu fluxes in the Sn/Cu reaction couples, similar calculations showed that the electromigration effects were only 2 and 4% of the chemical potential effects, respectively. These calculated results were in good agreement with the experimental observations that in the Sn/Cu system the electric current effects were insignificant upon the interfacial reactions.  相似文献   

2.
Electromigration has been observed and quite extensively investigated in the compositionally homogeneous conducting lines in the integrated circuit devices; however, the effect of electric current upon the interfacial reactions has not been discussed. This study investigated the effect of electric current upon the chemically driven interfacial reactions in the Al/Ni system. Al/Ni reaction couples annealed at 400°C with and without the passing of electric current were examined. Two intensities of electric currents, 5×102 A/cm2 and 103 A/cm2, were used in this study. Same intermetallics, Al3Ni and Al3Ni2, were formed at the interfaces; however, the thickness of the reaction layer in the reaction couples with the passing of electric current was much larger than those without electric current. This novel phenomenon has never been reported in the literature, and the understanding of its mechanism needs further investigation.  相似文献   

3.
The intermetallic compounds (IMCs) formed during the reflow and aging of Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder BGA packages with Au/Ni surface finishes were investigated. After reflow, the thickness of (Cu, Ni, Au)6Sn5 interfacial IMCs in Sn3Ag0.5Cu0.06Ni0.01Ge was similar to that in the Sn3Ag0.5Cu specimen. The interiors of the solder balls in both packages contained Ag3Sn precipitates and brick-shaped AuSn4 IMCs. After aging at 150°C, the growth thickness of the interfacial (Ni, Cu, Au)3Sn4 intermetallic layers and the consumption of the Ni surface-finished layer on Cu the pads in Sn3Ag0.5Cu0.06Ni0.01Ge solder joints were both slightly less than those in Sn3Ag0.5Cu. In addition, a coarsening phenomenon for AuSn4 IMCs could be observed in the solder matrix of Sn3Ag0.5Cu, yet this phenomenon did not occur in the case of Sn3Ag0.5Cu0.06Ni0.01Ge. Ball shear tests revealed that the reflowed Sn3Ag0.5Cu0.06Ni0.01Ge packages possessed bonding strengths similar to those of the Sn3Ag0.5Cu. However, aging treatment caused the ball shear strength in the Sn3Ag0.5Cu packages to degrade more than that in the Sn3Ag0.5Cu0.06Ni0.01Ge packages.  相似文献   

4.
This study investigates the electromigration effect upon the Zn/Ni and Bi/Ni interfacial reactions by using reaction couple techniques. Three phases, β1-NiZn, γ-Ni5Zn21, and δ-NiZn8 formed in the Zn/Ni couples reacted at 150°C and 200°C for 4 h to 360 h, and the reaction layers grow thicker with longer reaction time. Passage of a 300 A/cm2 current through the Zn/Ni couples has no significant effect upon the interfacial reaction. There is no noticeable difference in the phase formation and layer thickness of the two kinds of Zn/Ni couples with and without the passage of electric currents. Only NiBi3 phase was found in the Bi/Ni couples reacted at 150, 170, 185 and 200°C. Passage of a 300 A/cm2 electric current through the Bi/Ni couples did not change the phase formation, and growth rates of the NiBi3 phase in the couples reacted at 185°C and 200°C were not affected by passage of electric currents either. However, growth rate of the NiBi3 phase was enhanced in the Bi/Ni couples reacted at 150°C and 170°C with the passage of a 300 A/cm2 electric current. A mathematical model was proposed to describe the electromigration effect upon the growth of the intermetallic compounds. Physical parameters in the models were determined by optimization based on experimental measurements, and the results indicate that the values of the apparent effective charge of Bi and Ni decreased sharply with increasing temperatures.  相似文献   

5.
Environmental concerns as well as legal constraints have been pushing research on flip chip technology towards the development of lead-free solders and also to new deposition techniques [Z.S. Karim, R. Schetty, Lead-free bump interconnections for flip-chip applications, in: IEEE/CPMT 1nternational Electronics Manufacturing Technology Symposium, 2000, pp. 274-278, P. Wölflick, K. Feldmann, Lead-free low-cost flip chip process chain: layout, process, reliability, in: IEEE International Electronics Manufacturing Technology (IEMT) Symposium, 2002, pp. 27-34, M. McCormack, S. Jin, The design and properties of new, pb-free solder alloys, in: IEEE/CPMT International Electronics Manufacturing Technology Symposium, 1994, pp. 7-14, T. Laine-Ylijoki, H. Steen, A. Forsten, Development and validation of a lead-free alloy for solder paste applications. IEEE Transactions on Components, Packaging, and Manufacturing technology, 20(3) (1997) 194-198, D. Frear, J. Jang, J. Lin, C. Zhang, Pb-free solders for flip-chip interconnects, JOM, 53(6) (2001) 28-32].Binary and ternary tin alloys are promising candidates to substitute lead-content components. In this paper, we describe an electroplating technique for high density FlipChip packaging [M. Bigas, E. Cabruja, Electrodeposited Sn/Ag for flip chip connection, CDE (2003)]. An analysis using Auger Electron Spectroscopy (AES) together with additional Energy Dispersive Xray analysis (EDS) tests and Scanning Electron Microscope (SEM) analysis have been performed to optimize the reflow process of the electrodeposited bumps.  相似文献   

6.
For development of a lead-free composite solder for advance electrical components, lead-free Sn3.5Ag0.5Cu solder was produced by mechanically mixing 0.5 wt.% TiO2 nanopowder with Sn3.5Ag0.5Cu solder. The morphology and growth kinetics of the intermetallic compounds that formed during the soldering reactions between Sn3.5Ag0.5Cu solder with intermixed TiO2 nanopowder and Cu substrates at various temperatures ranging from 250 to 325 °C were investigated. A scanning electron microscope (SEM) was used to quantify the interfacial microstructure at each processing condition. The thickness of interfacial intermetallic layers was quantitatively evaluated from SEM micrographs using imaging software. Experimental results show that a discontinuous layer of scallop-shaped Cu-Sn intermetallic compounds formed during the soldering. Kinetics analysis shows that the growth of such interfacial Cu-Sn intermetallic compounds is diffusion controlled with an activation energy of 67.72 kJ/mol.  相似文献   

7.
利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究了Sn3.8Ag0.7Cu(Sn37Pb)/Cu焊点在时效过程中的界面金属间化合物(IMC)形貌和成份。结果表明:150℃高温时效50、100、200、500h后,Sn3.8Ag0.7Cu(Sn37Pb)/Cu焊点界面IMC尺寸和厚度增加明显,IMC颗粒间的沟槽越来越小。50h时效后界面出现双层IMC结构,靠近焊料的上层为Cu6Sn5,邻近基板的下层为Cu3Sn。之后利用透射电镜观察了Sn37Pb/Ni和Sn3.8Ag0.7Cu/Ni样品焊点界面,结果显示,焊点界面清晰,IMC晶粒明显。  相似文献   

8.
The interfacial reactions between In49Sn solders and Ag thick films at temperatures ranging from 200°C to 350°C have been studied. The intermetallic compound formed at the Ag/In49Sn interface is Ag2In enveloped in a thin layer of AgIn2. Through the measurement of the thickness decrease of Ag thick films, it has been determined that the reaction kinetics of Ag2In has a linear relation to reaction time. Morphology observations indicated that the linear reaction of Ag2In was caused by the floating of Ag2In into the In49Sn solder as a result of the In49Sn solder penetrating into the porous Ag thick film. A sound joint can be obtained when a sufficient thickness of the Ag thick film (over 19.5 μm) reacts with the In49Sn solder. In this case, the tensile tested specimens fracture in the In49Sn matrix.  相似文献   

9.
The interfacial reaction between liquid In-49Sn solders and Ag substrates results in the formation of a thicker Ag2In intermetallic compound accompanied with the development of a thin AgIn2 layer. Through further aging of the In-49Sn/Ag soldered specimens at various temperatures ranging from room to 100°C, solid/solid trnasitions between Ag2In and AgIn2 intermetallic compounds can be observed. When the temperature drops below 75°C, Ag2In will react with the In-49Sn solder to form the dominant AgIn2 phase. Conversely, AgIn2 is consumed at a higher temperature (e.g., 100°C) when reacting with the Ag substrate to create a now dominant Ag2In phase. Lastly, the different mechanical, electrical, magnetic, and corrosion behaviors of both intermetallic compounds are respectively made known through direct measurements of the material properties of the individual Ag2In and AgIn2 bulk samples.  相似文献   

10.
The intermetallic compounds formed in Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder BGA packages with Ag/Cu pads are investigated. After reflow, scallop-shaped η-Cu6Sn5 and continuous planar η-(cu0.9Ni0.1)6Sn5 intermetallics appear at the interfaces of the Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder joints, respectively. In the case of the Sn3Ag0.5Cu specimens, an additional ε-Cu3Sn intermetallic layer is formed at the interface between the η-Cu6Sn5 and Cu pads after aging at 150°C, while the same type of intermetallic formation is inhibited in the Sn3Ag0.5Cu0.06Ni0.01Ge packages. In addition, the coarsening of Ag3Sn precipitates also abates in the solder matrix of the Sn3Ag0.5Cu0.06Ni0.01Ge packages, which results in a slightly higher ball shear strength for the specimens.  相似文献   

11.
铜铟铋硫对Sn-Ag基无铅焊料性能的影响   总被引:5,自引:1,他引:5  
研究了Cu、In、Bi、S元素对Sn-Ag基无铅焊料熔点和铺展性的影响。结果表明:Sn-Ag-Cu三元合金成分为95.5%Sn3.5%Ag1%Cu时具有较低熔点(215℃)和好的铺展性;加入适量的In可降低Sn-Ag合金的熔点和改善铺展性能;随w(Bi)的增加Sn-Ag-Bi三元合金的熔点降低、铺展性变好;Sn-Ag合金的熔点随w(S)的增加而升高,加入少量S能改善Sn-Ag合金的铺展性。  相似文献   

12.
Single shear lap joints were made with four different solders, Sn-Pb and Sn-Ag eutectic solders, and their composites containing about 20 vol.% in-situ Cu6Sn5 intermetallic phases about 3–8 micrometers in diameter. Two sets of experiments were performed: In the first set, all of the above four solder joints were aged at 150°C for periods ranging to 5000 h and the intermetallic growth was monitored periodically. In the second set, each of the above four solder joints was aged at five different temperatures for 4000 h. The interfacial layers between solders and the Cu substrate were examined using optical and scanning electron microscopy. The growth kinetics of intermetallic interfacial layers formed between solder and Cu substrate was characterized. The effect of in-situ Cu6Sn5 intermetallic phases on the growth rate is discussed. The growth rate of the intermetallic layers in the eutectic Sn-Pb composite was slower for the first 150 h as compared to the eutectic Sn-Pb non-composite. The growth rate of the intermetallic layers were similar for both the eutectic Sn-Ag and eutectic Sn-Ag composite throughout the aging duration. The activation energies for Cu6Sn5 layer growth for the eutectic Sn-Pb and Sn-Ag solder joints are evaluated to be 111 kJ/mol and 116 kJ/mol, respectively. The eutectic Sn-Pb and Sn-Ag composite solder joints exhibit higher activation energies of 161 kJ/mol and 203 kJ/mol.  相似文献   

13.
电迁移对Sn3.0Ag0.5Cu无铅焊点剪切强度的影响   总被引:1,自引:1,他引:0  
通过热风回流焊制备了Cu/Sn3.0Ag0.5Cu/Cu对接互连焊点,测试了未通电及6.5 A直流电下通电36 h和48 h后焊点的剪切强度.结果表明,电迁移显著地降低了焊点的剪切强度,电迁移36 h使剪切抗力降低约30%,电迁移48 h降低约50%.SEM观察断口和界面形貌表明,界面金属间化合物增厚使断裂由韧性向脆性...  相似文献   

14.
研究了150℃时效0,200,500h对Sn3.0Cu0.15Ni/Cu界面组织结构的影响.结果表明:界面金属间化合物层由Cu6Sn5层和Cu3Sn层组成,质量分数为0.15%的Ni的加入会使IMC层最初变厚,但在时效过程中,热稳定性强的界面化合物(Cu,Ni)6Sn5的生成,会抑制Cu3Sn化合物层的生长;同时Ni的加入会降低Cu6Sn5颗粒的长大速度,并且随着时效时间的延长,Cu6Sn5颗粒的形貌呈多面体结构.  相似文献   

15.
Ni-7wt.%V(8at.%V) is an important under bump metallization material, and Sn is the primary element in most solders. This study examines the Sn/Ni-8at.%V interfacial reactions at 160°C, 200°C, 250°C, 300°C, 325°C, 350°C, and 400°C. Unlike the interfacial reactions in the Sn/Ni couples, a ternary T phase and the binary Ni3Sn4 phase are formed at 160°C. The vanadium solubility in the Ni3Sn4 phase is only 0.2 at.%, while the T phase contains 13.9at.%V. Similar results are found in the couples at 200°C, and the reaction paths are Sn/Ni3Sn4/T/Ni-V. The reaction paths are liquid/T/Ni3Sn4/Ni-V at 250°C and 300°C and are liquid/Ni3Sn4/Ni-V at 350°C and 400°C. Because the reaction products and the reaction rates in the Sn/Ni-8at.%V and Sn/Ni couples are different, reliabilities of the electronic products with the Ni-8at.%V barrier layer should not be assessed based only on the results of the Sn/Ni couples.  相似文献   

16.
在焊点与铜基之间形成的Cu-Sn合金成分对表面安装器件的疲劳寿命起着关键性的作用。本文着重研究了93.5Sn3.5Ag(简写为Sn-Ag)焊料与Cu基界面间形成的合金层,通过电子扫描显微镜(SEM),X衍射(XDA)及能谱X射线(EDX)等分析发现,在Sn-Ag与Cu基界面上存在Cu6Sn5及Cu3Sn两种合金成分,且随着热处理时间增加,Cu6Sn5合金层增厚,并在该处容易出现裂纹而导致焊点强度减弱,从而使焊点产生疲劳失效。  相似文献   

17.
The effect of Cu content in Sn(Cu) alloys on the interfacial reaction between Ni thin film and Sn(Cu) alloys has been investigated. We have found that the variation of Cu content has a strong influence on the spalling of the Ni thin film. With small Cu additives in the Sn, spalling was deferred to longer reflowing time. When the Cu content increased to about 1.0 wt.%, a layer of Cu-Sn compound formed on the Ni thin film, and no spalling was observed after 20-min reflowing. The possible mechanism of spalling deferring is proposed. A Cu flux from the solder to the interface compensated the ripening flux of the semispherical compound grains; therefore, spalling was retarded. The driving force of the Cu flux was attributed to the reduction of Cu solubility caused by the presence of Ni at the interface of the Ni thin film. The Cu flux from solder to the interface is calculated to be in the same order with the ripening flux of the Cu6Sn5 compound grains, which confirms the proposed mechanism of spalling deferring. For the Sn(Cu) alloys having Cu content over 1.0 wt.%, the Cu-Sn compound layer grew so fast that the surface of the interfacial compound layer was free of Ni. There was no Cu flux to compensate the ripening flux; therefore, the ripening flux dominated, and spalling occurred after a short reflowing time.  相似文献   

18.
研究了复合无铅焊料Sn3.8Ag0.7Cu-xNi(x=0.5,1.0,2.0)与Au/Ni/Cu焊盘在不同回流次数下形成的焊点的性能.结果表明,Ni颗粒增强的复合焊料具有良好的润湿性能,熔点小于222℃;X为0.5的焊料界面IMC由针状(CuNi)6Sn5演化为双层IMC,即多面体状化合物(CuNi)6Sn5和回飞棒...  相似文献   

19.
汤清华 Wu.  L 《电子器件》1999,22(2):87-92
本文研究了热处理时间对不同组分的42Sn58Bi-96.5Sn3.5Ag焊料疲劳性能的影响,研究发现适当的热处理时间能提高焊点的机械强度,延长焊点的疲劳寿命。  相似文献   

20.
《Microelectronics Reliability》2014,54(11):2513-2522
Appropriate constitutive, damage accumulation and fracture models are critical to accurate life predictions. In this study, we utilize the maximum entropy fracture model (MEFM) to predict and validate cyclic hysteresis in Sn3.8Ag0.7Cu and Sn3.0Ag0.5 solder alloys through a damage enhanced Anand viscoplasticity model. MEFM is a single-parameter, information theory inspired model that aims to provide the best estimate for accumulated damage at a material point in ductile solids in the absence of detailed microstructural information. Using the developed model, we predict the load drop during cyclic fatigue testing of the two chosen alloys. A custom-built microscale mechanical tester was utilized to carryout isothermal cyclic fatigue tests on specially designed assemblies. The resultant relationship between load drop and accumulated inelastic dissipation was used to extract the geometry and temperature-independent damage accumulation parameter of the maximum entropy fracture model for each alloy. The damage accumulation relationship is input into the Anand viscoplastic constitutive model, allowing prediction of the stress–strain hysteresis and cyclic load drop. The damage accumulation model is validated by comparing predicted and measured load drops after 55 and 85 cycles respectively for Sn3.8Ag0.7Cu and Sn3.0Ag0.5 solder alloys. The predictions agreed to within 10% and 20% of the experimental observations respectively for the two alloys. The damage enhanced Anand model developed in this study will enable the tracking of crack fronts during finite element simulations of fatigue crack initiation and propagation in complex solder joint geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号