首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
本文通过对BP神经网络和影响交通流量因素的分析,采用Windrow-Hoff学习算法、Kolmogorov定理和trainlm训练方法,实现对长春市开运街和湖西路路段动态交通流量的预测.  相似文献   

2.
针对已有基于改进动态递归神经网络预测方法的不足,并充分考虑交通流本身所存在的复杂性、非线性和不确定性特点,提出了一种基于可变增益Elman神经网络的交通量短时预测方法。该方法通过引入一个基于实时误差分析的可变增益因子,实现了网络的实时更新。通过长春市人民大街的实测数据对方法进行了验证。试验结果表明,本文方法在网络收敛时间和预测精度方面均优于已有的基于Elman神经网络的预测模型。  相似文献   

3.
在研究交通流量特性的基础上,以交通流量控制为最终目标,建立了基于BP(Back Propagation)神经网络的交通流量预测模型。以某市某三叉口路段为例进行仿真模拟,结果表明预测系统能较准确地预测出交通流量状况。  相似文献   

4.
基于动态递归模糊神经网络的动态系统辨识   总被引:1,自引:0,他引:1  
模糊系统和神经网络由于具有逼近任意连续非线性映射的特性而广泛应用于系统的辨识和控制,但是传统的模糊神经网络是一种静态映射,不适用于动态系统的辨识,而现实工程中的控制对象反映的是系统的动态行为.为了提高动态系统的辨识精度,提出了一种新型的动态递归模糊神经网络,并根据动态递归神经网络的数学模型推导其动态反向传播学习算法及其改进算法.仿真结果表明:由于动态模糊神经网络的辨识过程同时利用了系统的当前数据和历史数据,对动态系统的辨识,特别是对具有纯时间延迟动态系统的辨识,较传统模糊神经网络在辨识精度和稳定性方面具有更好的效果.同时,确定网络权值和隶属函数参数初始值的方法可使动态系统的辨识过程具有更快的收敛速度.  相似文献   

5.
交通堵塞是制约城市经济发展的重要因素之一,如何解决使其畅通无阻是目前我国各大城市面临的一个难题.本文运用先进的理论技术,从不同的角度提出了几种进行交通流量预测的方法,如人工智能中的神经网络,面向对象等.可以及时、有效地对交通流量进行合理预测.为解决交通堵塞问题提供参考依据,最终达到规避拥堵,实现车流畅通的目的.  相似文献   

6.
对于无法得到数学模型的过程,我们提出了基于改进型自递归神经网络的动态过程数据校核方法,并基于递归网络结构推导出一种BP(Back Propagation-反向传播)训练方法,由此方法而得到的数据校验结果更准确无误。  相似文献   

7.
针对静态模糊神经网络对动态系统辨识精度低的特点,在T-S模糊神经网络标准结构基础上,通过在输入层与状态层间加入可以记忆暂态信息的递归层,一种新的T-S递归型模糊神经网络(TSRFNN)被提出,来提高对动态系统的辨识能力.同时,给出了参数的动态BP学习算法.通过仿真实验,证明提出的TSRFNN对动态非线性系统的辨识比传统静态模糊神经网络(TFNN),具有更快的网络收敛速度,更高的辨识精度,更适合于动态系统的辨识.  相似文献   

8.
提出一种基于动态递归神经网络的自适应控制器,该控制器能通过自学习进行适应性控制,且结构简单,易于实现。其主要特点是能够提供一个跟踪网络来辩识系统模型,进而确定控制器的网络参数,实现间接自适应神经网络控制。经过对大量非线性系统的仿真研究,证明其具有良好的控制性能。  相似文献   

9.
传统的径向基函数神经网络构造算法大多是根据先验知识和以往的经验事先确定网络的隐层结构,采用传统聚类和最小二乘法训练网络的各项参数,这种算法一般是基于局部搜索机制,使得训练的参数往往陷入局部极小值.提出用遗传算法结合一种新的聚类方法即最疏集(MSS-most scattered set)均值聚类算法和传统的最小二乘法来训练RBF(radial basis function)网络结构参数的方法.该方法不仅避免了网络训练陷入局部极小的问题,而且新的聚类方法的计算效率有所提高.通过把该算法应用在交通流预测方面,取得了令人满意的效果.  相似文献   

10.
基于递归神经网络和模糊系统,给出了一种动态T-S递归模糊神经网络(DTRFNN)。该神经网络用BP算法进行网络权值的学习,并在权值学习的基础上采用改进的BP算法克服局部极小。以动态系统的辨识为例进行仿真实验研究,并与一般的模糊神经网络进行了比较。结果表明,DTRFNN的辨识误差较小,取得了很好的辨识效果。该神经网络应用于某金属温度软测量时,能很好地实现温度的在线检测。  相似文献   

11.
针对现有预测模型在话务量发展趋势变化、新技术新业务引入后模型失效、预测精度下降等问题,提出一种基于神经网络和事件样本库的智能预测方法。该方法具有自学习功能,可根据预测误差自动调整预测参数并更新事件样本,对话务量趋势变化、事件影响程度变化及新事件的发生具有持续自适应能力。仿真结果表明,该预测方法能有效降低预测误差,与现有方法相比,话务量的预测精度提高了6.57%。  相似文献   

12.
基于K-均值聚类算法RBF神经网络交通流预测   总被引:1,自引:0,他引:1  
针对目前道路拥堵等交通问题,本文采用K-均值聚类算法对径向基函数(radial basis function,RBF)网络进行优化,通过K-均值聚类算法把所有的输入样本进行统一聚类,求得所有隐含层节点的RBF中心值Ci,并用最小二乘法(LMS)进行RBF网络的权值调整,同时在一定的时间和路段内对车流量进行数据采集,通过建立RBF神经网络模型,运用Matlab软件把采集的数据、图像进行计算机仿真,仿真结果表明,未加入K-均值聚类的RBF神经网络,其预测输出曲线大致可以和实际输出曲线拟合,但在数据波动较大的时刻,预测曲线的收敛速度偏慢且效率偏低;而采用K-均值聚类算法的RBF神经网络,在实际输出波动较大时,预测输出的曲线收敛速度和准确度都较高,因此,本研究相对于普通的BP神经网络,有更高的预测精度和较好的收敛性。该研究适用于市区内的交通流预测。  相似文献   

13.
本文介绍了多层前向神经网络及其学习算法。并利用多层前向神经网络对复杂非线性系统进行预测研究。实验结果证明该方法是有效的。  相似文献   

14.
Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous researches mostly focus on shallow traffic prediction models, which performances were unsatisfying since short-term traffic flow exhibits the characteristics of high nonlinearity, complexity and chaos. Taking the spatial and temporal correlations into consideration, a new traffic flow prediction method is proposed with the basis on the road network topology and gated recurrent unit (GRU). This method can help researchers without professional traffic knowledge extracting generic traffic flow features effectively and efficiently. Experiments are conducted by using real traffic flow data collected from the Caltrans Performance Measurement System (PEMS) database in San Diego and Oakland from June 15, 2017 to September 27, 2017. The results demonstrate that our method outperforms other traditional approaches in terms of mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE).  相似文献   

15.
基于遗传神经网络优化模型的交通量预测   总被引:1,自引:0,他引:1  
实时、准确的交通量预测是实现动态交通流控制及诱导的前提和基础.为了更准确地对其进行预测,本文建立了遗传神经网络优化模型,该模型既利用遗传算法全局搜索、快速收敛的优点,又利用神经网络非线性描述、自学习自适应的优点.并以实际道路为例,给出了具体的应用方法,计算机仿真结果表明该模型精度较高、具有可行性.  相似文献   

16.
基于广义回归神经网络的交通流预测模型   总被引:1,自引:0,他引:1  
将广义神经网络技术引入到交通流量的长期预测中,介绍了广义神经网络模型的理论基础和网络结构,建立了天津市某路口交通流量的数学模型,并通过调查数据对交通流进行了预测,测试结果表明,该方法有一定的适用性.  相似文献   

17.
网络流量预测模型对于网络性能评价和服务质量保证有着重要意义。网络性能评价、网络规划、网络预测都离不开真实的数据和现象的捕获。基于自回归滑动平均模型(ARMA),利用时间序列建模,提出了利用组合模型对网络流量进行预测的方法。理论分析和实验结果表明,组合模型能达到较高的预测精度。  相似文献   

18.
智能交通系统是目前世界上公认的解决城市交通拥堵问题的最佳措施,实时、准确的交通流量预测是智能交通系统实现的关键技术之一,也是实现智能交通诱导及控制的前提。文章对几种重要的交通流量预测模型的理论和优缺点进行了比较,分析了影响预测模型的因素,提出了一种智能组合预测方法。该方法利用遗传算法群体搜索的特点,组合各种算法,优化预测思路,充分发掘不同算法的差异优势,实践证明该思路是切实可行的。  相似文献   

19.
为解决视频流量预测问题,结合神经网络和小波技术建模IP(Internet Protoc01)网络视频流,提出了利用神经网络预测尺度因子的预测算法。对可变比特率的压缩视频流完成小波分解,得出尺度因子。通过对尺度因子的预测和小波重建,完成视频流量预测。尺度因子的归-化特性简化丁神经网络处理过程。对真实VBR(Variable BitRate)视频流的流量预测实验表明,模型对IP网络普遍应用的高压缩比视频流具有良好的预测能力。  相似文献   

20.
目的减少铝电解故障的发生,提高阳极效应预报的准确性、实时性和铝的生产效率,节约能源.方法将遗传算法应用于小波神经网络,构成遗传小波神经网络,以确定小波基函数的个数、优化网络参数,以遗传小波神经网络为预测模型,通过预测槽电阻变化率来预测电解过程中的阳极效应.结果通过遗传算法能对小波神经网络的参数进行全局优化,确定了网络结构,而且小波神经网络具有较强的自适应性、鲁棒性和函数逼近能力,使预报精度提高了约9.5%,提前预报时间1 m in左右.结论该预测模型改善了故障预报准确性和实时性,避免了故障的发生,降低了能源消耗,提高了铝电解的生产效率,实现了安全生产.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号