首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SOI partially depleted body-contact MOSFETs were subjected to static and dynamic hot carrier stress. Drain current was investigated by means of Deep Level Transient Spectroscopy and switch-ON transient analysis in a wide temperature range. Under static degradation regime, drain current behaviour was determined by the creation of two discrete traps most likely located in the drain vicinity; a hole trap cited in the literature and a defect of metastable nature. Under dynamic degradation regime, drain current behaviour was determined by body–Si/SiO2 interface-state generation. Experimental data and fitting results based on stretched exponential law are in accordance.  相似文献   

2.
We present a detailed study of drain current DLTS spectra performed on asreceived and failed AlGaAs/GaAs and AlGaAs/InGaAs HEMT's of four different suppliers submitted to hot-electron tests. We demonstrate that a remarkable correlation exists between DLTS features and permanent and recoverable degradation effects. In particular, different behaviours have been found: (i) recoverable effects seems to be correlated with modulation of charge trapped on DX and ME6 centers. (ii) permanent degradation consisting in a decrease in Id and VT is due to negative charge trapping and is associated with a large increase of a peak having Ea=1.22 eV in the DLTS spectra of failed devices; (iii) development of traps in the gate-to-drain access region induces a permanent increase in drain parasitic resistance Rd and decrease in Id, and is correlated with the growth of a “hole-like” peak in DLTS spectra measured after hot-electron tests.  相似文献   

3.
Areally nonuniform distribution of oxide charge gives a significant distortion in the gate capacitance and subthreshold DC drain current versus DC gate voltage characteristics. This distortion prevents a reliable determination of the spatial profile of interface and oxide traps generated when a MOS transistor is subjected to channel hot carrier stress. A new procedure is demonstrated which separates the nonuniform oxide charge distribution from interface traps by combining the analysis of two experimental DC characteristics: the subthreshold drain-current and the DC base recombination current versus the gate voltage  相似文献   

4.
Traps are characterized in AlGaN–GaN HEMTs by means of DLTS techniques and the associated charge/discharge behavior is interpreted with the aid of numerical device simulations. Under specific bias conditions, buffer traps can produce “false” surface-trap signals, i.e. the same type of current-mode DLTS (I-DLTS) or ICTS signals that are generally attributed to surface traps. Clarifying this aspect is important for both reliability testing and device optimization, as it can lead to erroneous identification of the degradation mechanism, thus resulting in wrong correction actions on the technological process.  相似文献   

5.
《半导体学报》2009,30(12):30-32
A clear correspondence between the gated-diode generation-recombination (R-G) current and the per-formance degradation of an SOI n-channel MOS transistor after F-N stress tests has been demonstrated. Due to the increase of interface traps after F-N stress tests, the R-G current of the gated-diode in the SOI-MOSFET architecture increases while the performance characteristics of the MOSFET transistor such as the saturation drain current and sub-threshold slope are degraded. From a series of experimental measurements of the gated-diode and SOI-MOSFET DC characteristics, a linear decrease of the drain saturation current and increase of the threshold volt-age as well as a like-line rise of the sub-threshold swing and a corresponding degradation in the trans-conductance are also observed. These results provide theoretical and experimental evidence for us to use the gated-diode tool to monitor SOI-MOSFET degradation.  相似文献   

6.
Hot carrier generated fixed and interface traps, located at the Si-SiO/sub 2/ interface near the drain junction, are observed from the gate-to-drain capacitance of the MOS transistor, using an AC measurement signal applied to the drain. When the channel is biased in inversion, the drain junction is forward biased and carriers from the AC signal source are readily injected into the channel, leading to charge exchange between the inversion carriers and the traps located in one half of the band gap. In channel depletion, the drain junction is reverse biased, and charge exchange is between the substrate majority carriers and traps located in the other half of the band gap. The charge interaction manifests itself in a differential gate capacitance, extracted from pre- and post-stress gate capacitance voltage curves. The differential capacitance spectrum shows two distinct peaks, which are attributed to the response of donor and acceptor interface traps, located on either half of the band gap. This model is supported by capacitance measurements at different frequencies. Lower frequencies lead to a proportionally larger increase in the depletion regime response. Prolonged stress results in the convolution of the two peaks. A reverse bias on the drain leads to the deconvolution of the spectrum, allowing the two peaks to be clearly resolved. Trap response may be masked by the fixed charge, but this can be overcome by depopulation of trapped electrons or neutralization of trapped holes through elevated temperature anneal. The differential gate-to-drain capacitance allows the electrical identification of both donor and acceptor interface traps in the same device.<>  相似文献   

7.
Large decreases in the drain current in the linear and low Vds region followed by a “kink” in the output Id-Vds characteristics have been found after hot electron stress test in AlGaAs/InGaAs/GaAs power pseudomorphic HEMT's. Decrease in the transconductance measured in linear region, increase in the drain parasitic resistance and trasconductance frequency dispersion have also been observed and attributed to the generation of electron traps in the gate-to-drain access region.  相似文献   

8.
Hot carrier degradation under conventional maximum substrate current Ib,max, electronic gate current Ig (HE) and substrate enhanced electron injection (SEEI) in advanced deep sub-micron NMOSFETs is studied. It is found that the interface trap generation is the dominant mechanism for hot carrier degradation under these three stress conditions. Furthermore, the behavior of SEEI under AC stress applied to the gate is investigated by charge pumping. The results indicate that the interface trap generation is also the dominant mechanism for hot carrier degradation under AC stress. However, due to the recovery of SEEI, the degradation of the electrical parameters for NMOSFETs at equally effective stress duration under AC stress is slightly less than that under DC stress. Finally, the recovery behavior of secondary impact ionization damage is discussed by using an on-the-fly technique and the charge pumping spot measurement technique. It is found that the passivation of the interface traps is directly responsible for the recovery of Idlin.  相似文献   

9.
In this work we study the variation in drain current of MOS transistors due to the capture and emission of electrons at interface states (traps), called random telegraph signal (RTS). Usually, RTS is studied in frequency domain. However, for digital circuits, it is more appropriate to use time-domain representations.The time-domain representation here proposed models the effect of RTS on Ids as instantaneous Vt shifts. We introduce a statistical numerical approach for computing the total ΔVt of the transistor considering all the traps in the interface. The method analyses the effect of non-uniform charge densities along the channel. To show the applicability of the methodology to circuit analysis on the electrical level, the model is applied to characterize read and write instability failures caused by RTS on a 6T-SRAM cell.  相似文献   

10.
An interface trap-assisted tunneling and thermionic emission model has been developed to study an increased drain leakage current in off-state n-MOSFET's after hot carrier stress. In the model, a complete band-trap-band leakage path is formed at the Si/SiO2 interface by hole emission from interface traps to a valence band and electron emission from interface traps to a conduction band. Both hole and electron emissions are carried out via quantum tunneling or thermal excitation. In this experiment, a 0.5 μm n-MOSFET was subjected to a dc voltage stress to generate interface traps. The drain leakage current was characterized to compare with the model. Our study reveals that the interface trap-assisted two-step tunneling, hole tunneling followed by electron tunneling, holds responsibility for the leakage current at a large drain-to-gate bias (Vdg). The lateral field plays a major role in the two-step tunneling process. The additional drain leakage current due to band-trap-band tunneling is adequately described by an analytical expression ΔId=Aexp(Bit/F). The value of Bit about 13 mV/cm was obtained in a stressed MOSFET, which is significantly lower than in the GIDL current attributed to direct band-to-band tunneling. As Vdg decreases, a thermionic-field emission mechanism, hole thermionic emission and electron tunneling, becomes a primary leakage path. At a sufficiently low Vdg, our model reduces to the Shockley-Read-Hall theory and thermal generation of electron-hole pairs through traps is dominant  相似文献   

11.
This work presents the effects of hot electron stress on the degradation of undoped Al0.3GaN0.7/GaN power HFET’s with SiN passivation. Typical degradation characteristics consist of a decrease in the drain current and maximum transconductance, an increase in the drain series resistance, gate leakage and a subthreshold current. Degradation mechanism has been investigated by means of gate lag measurements (pulsed I-V) and current-mode deep level transient spectroscopy (DLTS). Stressed devices suffered from aggravated drain current slump (DC to RF dispersion) which indicates possible changes in surface charge profiles occurred during hot electron stress test. The DLTS was used to identify the trap creation by hot electron stress. The DLTS spectra of stressed device revealed the evidence of trap creation due to hot electron stress.  相似文献   

12.
A method is presented which allows to distinguish the drain series resistance increase from other mechanisms contributing to the drain current degradation of hot-carrier stressed n-MOSFETs. Devices with different channel lengths but equal damages are used. The different degradation mechanisms are characterized quantitatively and a model for the drain current degradation is presented. For short stress times, the drain current degradation is dominated by series resistance degradation. For long stress times, however, the contribution of the mechanisms attributed to an “equivalent channel length increase” prevails.  相似文献   

13.
The generation of fast interface traps due to channel hot-carrier injection in n-channel MOS transistors is investigated as a function of stress temperature. The relative importance of the mechanisms for the generation of fast interface traps by hot electrons and hot holes is shown to be independent of the temperature. In all cases the generation of fast interface traps is slightly reduced at lower temperatures. The degradation of transistor Id-Vg characteristics, on the other hand, is strongly enhanced at lower temperatures. This is explained by a previously suggested model on the temperature dependence of the influence of the local narrow potential barrier, induced at the drain junction as a result of degradation, on the reverse-mode current characteristics. It is shown that only a minor part of the large current reduction at low temperatures can be ascribed to enhanced electron trapping  相似文献   

14.
The transistor performances and hot-carrier reliability in n-MOSFETs are investigated at high temperature in the range 25–125 °C. A careful analysis of the temperature dependence of the device parameters shows that transistor performances are significantly reduced and that the Fermi potential, the mobility and current reductions, contribute to decrease the device sensitivity to the hot-carrier damage at high temperature. Different degradation behaviors are found between DC and AC stressing depending on the degradation mechanisms i.e. whether the interface trap generation or oxide charge trapping dominates which consequently exhibits a strong temperature dependence through their magnitude and localization. It is pointed out that the reduction of the ionization rate significantly impacts the degradation behaviors at elevated temperature. Even if the amount of generated damage is slightly larger than what effectively influences the transistor characteristics, the parameter insensitivity to given at high temperature improves the transistor reliability. This improvement is determined in the value of the device lifetime at 125 and 70 °C using inverter and pass transistor operations in a 0.35 μm LDD complementary metal-oxide semiconductor (CMOS) technology suitable for 3.3 V operation.  相似文献   

15.
This paper presents a new test circuit for hot-carrier degradation analysis based on a ring oscillator. The devices and the test circuit were fabricated using Philips’ 0.35 μm CMOS technology. For single device, AC and DC hot-carrier-induced degradation are the same if the effective stress time is carefully taken into account. For circuit level degradation, the frequency of the ring oscillator, on logarithmic scale degrades at the same slope as the saturation drain current of nMOS transistor degrades, while pMOS transistor degradation is much smaller than nMOSFET degradation and can be ignored. For universal applications, the circuit degradation can be expressed by MOSFETs Idsat degradation with NSF (nMOSFET degradation speed factor) and PSF (pMOSFET degradation speed factor). Formulae for NSF and PSF calculations are derived. Simulations with Philips PSTAR circuit simulator were also performed, which well agree with the experiment results.  相似文献   

16.
Operation of n-channel MOSFET was studied at low temperatures. It has been shown that the charge state of shallow traps in the Si/SiO2 interface is responsible for the hysteresis of transistor drain characteristics in the prekink region. Thermally activated emptying of these traps leads to the sharp decrease of the current in the subthreshold mode of transistor operation.  相似文献   

17.
Hot-carrier-induced degradation behavior of reoxidized-nitrided-oxide (RNO) n-MOSFETs under combined AC/DC stressing was extensively studied and compared with conventional-oxide (OX) MOSFETs. A degradation mechanism is proposed in which trapped holes in stressed gate oxide are neutralized by an ensuing hot-electron injection, leaving lots of neutral electron traps in the gate oxide, with no significant generation of interface states. The degradation behavior of threshold voltage, subthreshold gate-voltage swing, and charge-pumping current during a series of AC/DC stressing supports this proposed mechanism. RNO device degradation during AC stressing arises mainly from the charge trapping in gate oxide rather than the generation of interface states due to the hardening of the Si-SiO2 interface by nitridation/reoxidation steps  相似文献   

18.
We refine our approach for hot-carrier degradation modeling based on a thorough evaluation of the carrier energy distribution by means of a full-band Monte–Carlo simulator. The model is extended to describe the linear current degradation over a wide range of operation conditions. For this purpose we employ two types of interface states, either created by single- or by multiple-electron processes. These traps apparently have different densities of states which is important to consider when calculating the charges stored in these traps. By calibrating the model to represent the degradation of the transfer characteristics, we extract the number of particles trapped by both types of interface traps. We find that traps created by the single- and multiple-electron mechanisms are differently distributed over energy with the latter shifted toward higher energies. This concept allows for an accurate representation of the degradation of the transistor transfer characteristics.  相似文献   

19.
The mechanisms and characteristics of hot carrier stress-induced drain leakage current degradation in thin-oxide n-MOSFETs are investigated. Both interface trap and oxide charge effects are analyzed. Various drain leakage current components at zero Vgs such as drain-to source subthreshold leakage, band-to-band tunneling current, and interface trap-induced leakage are taken into account. The trap-assisted drain leakage mechanisms include charge sequential tunneling current, thermionic-field emission current, and Shockley-Read-Hall generation current. The dependence of drain leakage current on supply voltage, temperature, and oxide thickness is characterized. Our result shows that the trap-assisted leakage may become a dominant drain leakage mechanism as supply voltage is reduced. In addition, a strong oxide thickness dependence of drain leakage degradation is observed. In ultra-thin gate oxide (30 Å) n-MOSFETs, drain leakage current degradation is attributed mostly to interface trap creation, while in thicker oxide (53 Å) devices, the drain leakage current exhibits two-stage degradation, a power law degradation rate in the initial stage due to interface trap generation, followed by an accelerated degradation rate in the second stage caused by oxide charge creation  相似文献   

20.
The effects of thickness in metal–semiconductor field effect transistor (MESFET) GaAs buffer on the device electrical performance and reliability have been investigated. Devices studied are 0.8-μm-gate GaAs MESFETs at different buffer thickness of 0.5 and 0.3 μm from similar MBE-grown processes. Three-terminal off-state breakdown measurements indicate that a substantial enhancement in the observed breakdown current for thinner-buffer MESFETs is attributed to the drain–source leakage or breakdown through the channel–substrate interface while the device is at pinch-off. DC and RF biased stress lifetests up to 323 °C channel temperature have been performed to accelerate the degradation mechanisms. It is found that the device degradation rate has little dependence on buffer thickness when stressed at a reversed gate–drain voltage below 70% of its breakdown threshold. The differences grow rapidly when biased close to the breakdown field because of the development of channel–substrate current in thinner buffer materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号