首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Results of experiments in vitro and in vivo, using an amperometric glucose microbiosensor based on a Prussian Blue (PB) modified carbon fiber electrode with very low dimensions (∼10 μm diameter), are presented. The electrocatalytic properties of the PB film enable detection of an enzymatic by-product (H2O2) at a very low applied potential: 0.0 V against SCE. The main steps during glucose microbiosensor construction were examined by cyclic voltammetry and electrochemical impedance spectroscopy. Excellent selectivity of the glucose microbiosensors against a large number of physiological interference compounds is demonstrated. Finally, microbiosensor responses during intraperitoneal injection, local infusion and local electrical stimulation showed sufficient sensitivity and stability to monitor multi-phasic and reversible changes in brain ECF glucose levels during physiological experiments, illustrating the excellent properties and utility of this biosensor design in the neurosciences.  相似文献   

2.
A strategy for dual sensing of Na+ and K+ ions using Prussian blue nanotubes via selective inter/deintercalation of K+ ion and competitive inhibition by Na+ ion, is reported. The analytical signal is derived from the cyclic voltammetry cathodic peak position Epc of Prussian blue nanotubes. Na+ and K+ levels in a sample solution can be determined conveniently using one Prussian blue nanotubes sensor. In addition, this versatile method can be applied for the analysis of single type of either Na+ or K+ ions. The dual-ion sensor response towards Na+ and K+ can be described using a model based on the competitive inhibition effects of Na+ on K+ inter/deintercalation in Prussian blue nanotubes. Successful application of the Prussian blue nanotubes sensor for Na+ and K+ determination is demonstrated in artificial saliva.  相似文献   

3.
利用偶氮胭脂红B(ACB)对多壁碳纳米管(MWNTs)进行非共价修饰,使其具有水分散性,将MWNTs-ACB水分散液滴涂于金电极表面并置于红外灯下烤干,即制得多巴胺(DA)电化学传感器。伏安研究表明:MWNTs—ACB膜对生物小分子DA的电化学氧化具有良好的催化作用。最优的检测条件下,DA的检测线性范围为:1.0×10-6~1.0×10-mol/L,检出限低至5.0×10-7mol/L(S/N=3)。对传感器的性能进行了考察,结果表明:该DA传感器具有良好的稳定性和重现性,灵敏度高,选择性好。将传感器应用于注射液中DA含量的测定,结果令人满意。  相似文献   

4.
Superoxide sensor based on hemin modified electrode   总被引:1,自引:0,他引:1  
A hemin modified pyrolytic graphite (PG) electrode was prepared and applied for the electrochemical determination of superoxide. The rate constant of heterogeneous electron transfer of adsorbed hemin was determined with cyclic voltammetry (CV) to be 15 s−1. The hemin modified electrode was applied to detect superoxide radicals produced by xanthine oxidase (XOD) catalyzed hypoxanthine oxidation. Sensitivity was higher than compared to the established cytochrome c (cyt c)-based sensor. The antioxidative activity of superoxide dismutase (SOD) and uric acid was also investigated.  相似文献   

5.
在空白玻碳电极上用电化学方法研制了聚组氨酸/镍复合膜(PHis/Ni),实验证明该复合膜修饰电极上存在氧化还原中心Ni(Ⅲ)/Ni(Ⅱ)。用循环伏安法初步探讨了该复合膜的电化学性质及其对甲醛的电催化氧化作用。碱性条件下,用线性扫描溶出伏安法测得在5.0×10-7~2.0×10-5mol/L的范围内,甲醛氧化峰电流与甲醛浓度呈良好的线性关系,检测下限为2.3×10-8mol/L。该修饰电极可用于测定水溶液中甲醛的含量。  相似文献   

6.
利用羧基化的多壁碳纳米管(MWCNT)修饰氧化铟锡(ITO)电极,表面吸附一层普鲁士蓝(PB)作为电子介体制作一种新型的乙醇传感器.通过循环伏安法、计时电流法对传感器的性能进行表征和研究.结果表明:所制备传感器对乙醇具有明显的电化学活性,线性范围为0.5~10mmol/L,在S/N=3的情况下,检出限为0.07mmol/L(R=0.9968).该传感器制备简单、经济实用,具有良好的准确性、灵敏度及抗干扰能力.  相似文献   

7.
A novel biocompatible environment friendly nanosilver Nafion®/nanoTiO2 Nafion® modified glassy carbon electrode was prepared by a simple procedure and characterized. This modified electrode was used as a sensing electrode for the detection of imidacloprid. Cyclic voltammetry, differential pulse voltammetry and amperometry were used in this work. The reduction potential of imidacloprid on this electrode is lower compared to other electrodes reported in the literature. The LOD and LOQ values obtained for the sensing of imidacloprid on this modified electrode are comparable to the values reported in the literature.  相似文献   

8.
在电聚合制备普鲁士蓝(PB)膜修饰铂丝电极基础上,引入纳米粒子采用聚乙烯醇缩丁醛(PVB)为辅助固酶膜基质制成一种新型的葡萄糖传感器.系统地研究了膜修饰和测试条件对传感器性能的影响,结果表明传感器的最佳工作电位是0.23 V,测试液的最适宜的pH值为7.0,最佳的测试温度35℃.在选定的工作条件下,传感器的测定范围为l×10-7~4.8×10-6mol/L,检出下限为4×10-8mol/L,响应时间为30 s,灵敏度较当前的葡萄糖传感器有明显的提高.  相似文献   

9.
A novel voltammetric sensor based on chemically modified bentonite–porphyrin carbon paste electrode (MBPCE) has been introduced for the determination of trace amount of Mn(II) in wheat flour, wheat rice and vegetables. In this method Mn(II) gives well-defined voltammetric peak at the pH range of 3.5–7.5. For the preliminary screening purpose, the catalyst was prepared by modification of bentonite with porphyrin and characterized by thermogravimetric method (TG) and UV–vis spectroscopy. The detection limit (three times signal-to-noise) with 4 min accumulation is 1.07 × 10−7 mol L−1 Mn(II). The peak currents increases linearly with Mn(II) concentration over the range of 6.0 × 10−7 to 5.0 × 10−4 mol L−1 (r2 = 0.9959). Statistical treatment of the results gave a relative standard deviation lower than 2.30%. The chemical and instrumental parameters have been optimized and the results showed that 1000-fold excess of the additive ions had not interferences on the determination of Mn(II).  相似文献   

10.
A simple and highly sensitive method is described for direct voltammetric determination of noscapine in blood and pharmaceutical sample. Glassy carbon electrode with effective method is modified with multiwall carbon nanotubes (MWNTs) to cause activation of multiwall carbon nanotubes structures for electrocatalyzes of noscapine oxidation. The cyclic voltammetric (CV) results indicated that MWNTs remarkably enhances electrocatalytic activity toward the oxidation of noscapine, which is leading to considerable improvement of anodic peak current for noscapine, and allows the development of a highly sensitive voltammetric sensor for detection of noscapine in pharmaceutical and clinical samples. Under the optimum condition, the calibration curve was linear in the concentration range 4.0 × 10−7–1.0 × 10−4 mol L−1 with the detection limit of 8.0 × 10−8 mol L−1 and relative standard deviation (R.S.D.%) lower than 1.0% (n = 5). Finally, some kinetic parameters were determined and multistep mechanism for oxidation of noscapine for first time was proposed.  相似文献   

11.
在优化的实验条件下,利用电化学方法制备了甘氨酸修饰电极,对修饰膜的电活性进行了表征.用循环伏安法研究了鸟嘌呤(G)和8一羟基脱氧鸟嘌呤核苷(8-OH-dG)在聚甘氨酸修饰电极上的电化学行为,并建立了对两者进行分别检测和同时检测的分析方法.实验结果表明,聚甘氨酸修饰电极可以增强鸟嘌呤和8-羟基脱氧鸟嘌呤核苷在电极表面的吸附,并且可以加快鸟嘌呤和8-羟基脱氧鸟嘌呤核苷在电极表面的电子传输,使两种电活性物质在聚甘氨酸修饰电极上的电化学信号明显增大,检测灵敏度大大提高,并且该修饰电极具有良好的稳定性和重现性.可用于鸟嘌呤和8-羟基脱氧鸟嘌呤核昔的分别和同时检测.  相似文献   

12.
将葡萄糖氧化酶(GOD)固定在多壁碳纳米管(MWCNTs)修饰电极(ME)上,GOD催化氧化葡萄糖生成过氧化氢,并使鲁米诺产生电致化学发光(ECL),据此构建了一种新型ECL葡萄糖传感器.结果表明:CNTs修饰的电极对鲁米诺和H2O2反应具有显著的电催化活性和增敏效果.该传感器对葡萄糖检测的线性范围为0.01~10.0...  相似文献   

13.
An electrochemical sensor based on graphene-polyaniline (GR-PANI) nanocomposite for voltammetric determination of 4-aminophenol (4-AP) is presented. The electrochemical behavior of 4-AP at the GR-PANI composite film modified glassy carbon electrode (GCE) was investigated by cyclic voltammetry. 4-AP exhibits enhanced voltammetric response at GR-PANI modified GCE. This electrochemical sensor shows a favorable analytical performance for 4-AP detection with a detection limit of 6.5 × 10−8 M and high sensitivity of 604.2 μA mM−1. Moreover, 4-AP and paracetamol can be detected simultaneously without interference of each other in a large dynamic range.  相似文献   

14.
Electrolytic deposition has been widely used to immobilize biomacromolecules, and it is always the most important factor to preserve or even increase an activity of the immobilized protein. We report here simple and rather universal method for the highly efficient immobilization of laccase for amperometric biosensing. Laccase from Cerrena unicolor has been successfully immobilized (electrolytic deposition) on the surface of thin, ordered polythiophene films (3-methylthiophene/3-thiopheneacetic acid/N-heptyl-3,6-bis(2-thiophene)carbazole). Two different compounds capable of mediating laccase-catalyzed reactions have been tested by cyclic voltammetry. They exhibited quasi-reversible electrodic behaviour with formal redox potentials ranging from 68 and 918 mV (E0vs. SCE). The immersion of the laccase-coated electrode in solution with substrate generated large catalytic currents easily recorded by cyclic voltammetry at low potential scan rates. Considering the fact, that immobilization strategy showed high efficiency, obtained results suggest that method for phenoloxidase immobilization has a great potential of enabling high throughput fabrication of bioelectronics’ devices.  相似文献   

15.
A highly sensitive hydrazine sensor was developed based on the electrodeposition of gold nanoparticles onto the choline film modified glassy carbon electrode (GNPs/Ch/GCE). The electrochemical experiments showed that the GNPs/Ch film exhibited a distinctly higher activity for the electro-oxidation of hydrazine than GNPs with 3.4-fold enhancement of peak current. The kinetic parameters such as the electron transfer coefficient (α) and the rate of electron exchange (k) for the oxidation of hydrazine were determined. The diffusion coefficient (D) of hydrazine in solution was also calculated by chronoamperometry. The sensor exhibited two wide linear ranges of 5.0 × 10−7-5.0 × 10−4 and 5.0 × 10−4-9.3 × 10−3 M with the detection limit of 1.0 × 10−7 M (s/n = 3). The proposed electrode presented excellent operational and storage stability for the determination of hydrazine. Moreover, the sensor showed outstanding sensitivity, selectivity and reproducibility properties. All the results indicated a good potential application of this sensor in the detection of hydrazine.  相似文献   

16.
A novel approach to construct a second-generation amperometric biosensor is described. The classical redox dye nile blue (NB) as mediator and horseradish peroxidase as a base enzyme were coimmobilized into the multiwalled carbon nanotubes (MWCNTs) modified ormosil matrix. Nafion was dispersed into the matrix to enhance the rate of the electron transfer and prevent the cracking of the ormosil film. The surface morphology of MWCNT/NB/NAF/HRP nanocomposite was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). Cyclic voltammetry and amperometry measurements were used to study and optimize the performance of the resulting peroxide biosensor. The apparent Michaelis–Menten constant was determined to be 1.1 mM. The effect of pH, applied potential and amount of the HRP enzyme on the electrochemical biosensor has been systematically studied. The fabricated biosensor demonstrated significant electrocatalytic activity for the reduction of hydrogen peroxide with wide linear range from 2 × 10−7 to 3.8 × 10−4 M, and low detection limit 1 × 10−7 M (S/N = 3) with fast response time <3 s. The facile procedure of immobilizing HRP and MWCNTs into the ormosil used in the present work can promote the development of electrochemical research for enzymes, proteins, biosensors, biofuel cells and other bioelectrochemical devices.  相似文献   

17.
C. Hirt 《Computers & Geosciences》2011,37(11):1836-1842
Gravimetric geoid computation is often based on modified Stokes's integration, where Stokes's integral is evaluated with some stochastic or deterministic kernel modification. Accurate numerical evaluation of Stokes's integral requires the modified kernel to be integrated across the area of each discretised grid cell (mean kernel). Evaluating the modified kernel at the center of the cell (point kernel) is an approximation, which may result in larger numerical integration errors near the computation point, where the modified kernel exhibits a strongly nonlinear behavior. The present study deals with the computation of whole-of-the-cell mean values of modified kernels, exemplified here with the Featherstone-Evans-Olliver (1998) kernel modification [Featherstone, W.E., Evans, J.D., Olliver, J.G., 1998. A Meissl-modified Vaní?ek and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations. Journal of Geodesy 72(3), 154-160]. We investigate two approaches (analytical and numerical integration), which are capable of providing accurate mean kernels. The analytical integration approach is based on kernel weighting factors which are used for the conversion of point to mean kernels. For the efficient numerical integration, Gauss-Legendre quadrature is applied. The comparison of mean kernels from both approaches shows a satisfactory mutual agreement at the level of 10−4 and better, which is considered to be sufficient for practical geoid computation requirements. Closed-loop tests based on the EGM2008 geopotential model demonstrate that using mean instead of point kernels reduces numerical integration errors by ∼65%. The use of mean kernels is recommended in remove-compute-restore geoid determination with the Featherstone-Evans-Olliver (1998) kernel or any other kernel modification under the condition that the kernel changes rapidly across the cells in the neighborhood of the computation point.  相似文献   

18.
快速检测敌百虫浓度传感器酶电极的研究   总被引:2,自引:0,他引:2  
敌百虫是一种当前使用广泛的有机磷类农药,使用传统方法检测时,难以实现现场快速检测的需要.现以丝网印刷电极为载体,以明胶包埋为主要方法制备了基于乙酰胆碱酯酶和胆碱氧化酶的电流型生物传感器酶电极,并对其性能进行了一系列评价,发现该酶电极在pH值为6.8,温度为37℃时对氯化乙酰胆碱有最大响应,其稳定期可达30d,测量的平均相对偏差为 2.18%.利用敌百虫对酶电极的抑制作用,可实现传感器对其的快速检测,测定时间可控制在10min,其测量的线性范围为10-10~10-5 mol/L,对敌百虫的检出限为1×10-10mol/L.  相似文献   

19.
将双壁碳纳米管(DWCNT)和氧化石墨烯(GO)超声分散在Nafion的乙醇溶液中,滴涂于玻碳电极(GCE)表面制得氧化石墨烯/双壁碳纳米管-Nafion复合材料修饰电极(GO/DWCNT-Nafion/GCE),可用于莱克多巴胺的灵敏检测。通过扫描电镜(SEM)对修饰电极表面形貌进行表征。使用差分脉冲伏安法(DPV)对莱克多巴胺在修饰电极上的电化学行为进行研究。实验结果表明,该修饰电极对莱克多巴胺表现出了强的电催化氧化效应。在pH=7.0的PBS缓冲体系中于-0.3 V下富集120 s后,该修饰电极对莱克多巴胺浓度在1.0×10-8~1.0×10-6mol/L范围内有着良好的线性响应,检测限为5.4×10-9 mol/L。同时,该电极选择性良好,表明该方法在食品安全检测领域具有实际应用前景。  相似文献   

20.
A electrogenerated chemiluminescence (ECL) sensor for itopride was developed based on tris(2,2-bipyridyl)ruthenium(II) (Ru(bpy)32+)-doped silica (RuDS) nanoparticles/biopolymer chitosan composites membrane modified glassy carbon electrode (GCE). The RuDS nanoparticles (52 ± 5 nm) were prepared by a modified Stőber synthesis method and were characterized by electrochemical, fluorometric and transmission electron microscopy technology. The Ru(bpy)32+ encapsulation interior of the silica nanoparticle maintains its electrochemical activities and also reduces Ru(bpy)32+ leaching from the silica matrix when immersed in water due to the electrostatic interaction. The ECL analytical performances of this ECL sensor for itopride based on its enhancement ECL emission of Ru(bpy)32+ were investigated in details. Under the optimum condition, the enhanced ECL intensity was linear with the itopride concentration in the range of 1 × 10−8 to 2 × 10−5 g/mL (R = 0.9978). The detection limit was 3 × 10−9 g/mL, and the relative standard deviation was 2.3% for 8 × 10−8 g/mL itopride (n = 11). The method was successfully applied to the determination of itopride in pharmaceutical and human serum samples with satisfactory results. The as-prepared ECL sensor for the determination of itopride displayed good sensitivity and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号