首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have previously shown that infection of CD4(+) T lymphocytes with the T-lymphotropic human herpesvirus 7 (HHV-7) downregulates surface CD4, which represents the high-affinity receptor for HHV-7. In this study, we report that HHV-7 infection also causes a progressive loss of the surface CXC-chemokine receptor 4 (CXCR4) in CD4(+) T cells, accompanied by a reduced intracellular Ca2+ flux and chemotaxis in response to stromal cell-derived factor-1 (SDF-1), the specific CXCR4 ligand. Moreover, CXCR4 is downregulated from the surface of HHV-7-infected T cells independently of CD4. Because intracellular CXCR4 antigen and mRNA levels are unaffected in productively HHV-7-infected cells, the downregulation of CXCR4 apparently does not involve a transcritional block. Since CXCR4 functions in association with CD4 to permit entry of several human immunodeficiency virus (HIV) isolates, the potential of HHV-7 to persistently downregulate the surface expression of CXCR4 may provide novel strategies for limiting HIV infection.  相似文献   

2.
The seroprevalence to Kaposi's sarcoma-associated herpesvirus (KSHV) or human herpesvirus type 8 (HHV-8) was surveyed in human immunodeficiency virus type 1 (HIV-1) carriers with or without skin diseases, and also in HIV-1 negative individuals in Thailand. Using an immunofluorescence assay, the seropositive rates to lytic antigens of HHV-8 in HIV-1 carriers with or without skin diseases were 25% and 7.4%, respectively, but none of HIV-1 negative individuals had antibody. The seroprevalence to HHV-8 antigens was high in HIV positive individuals with low CD4/CD8 ratio, suggesting that HHV-8 is reactivated during the immunosuppressive state. Several polypeptides with apparent molecular weights of 34-38,000 and 40,000, which were specific to HHV-8, were identified by the immunoprecipitation test using the seropositive sera. Our results suggested that HHV-8 co-existed with HIV in HIV-1 carriers and the existence of HHV-8 may be associated with clinical features in the skin.  相似文献   

3.
In an attempt to identify the human herpesvirus 7 (HHV-7) envelope protein(s) involved in cell surface binding, the extracellular domain of the HHV-7 glycoprotein B (gB) homolog protein was cloned and expressed as a fusion product with the Fc domain of human immunoglobulin G heavy chain gamma1 (gB-Fc) in an eukaryotic cell system. Indirect immunofluorescence followed by flow cytometric analysis revealed specific binding of gB-Fc to the membrane of SupT1 cells but not to other CD4+ T-lymphoblastoid cell lines, such as Jurkat or PM1, clearly indicating that gB-Fc did not bind to the CD4 molecule. This was also suggested by the ability of gB-Fc to bind to CD4-negative fibroblastoid Chinese hamster ovary (CHO) cells. The binding was abrogated by enzymatic removal of cell surface heparan sulfate proteoglycans by heparinase and heparitinase but not by treatment with condroitinase ABC. In addition, binding of the gB-Fc fusion protein to CHO cells was severely impaired in the presence of soluble heparin, as well as when heparan sulfate-deficient mutant CHO cells were used. Consistent with these findings, soluble heparin was found to block HHV-7 infection and syncytium formation in the SupT1 cell line. Although the CD4 antigen is a critical component of the receptor for the T-lymphotropic HHV-7, these findings suggest that heparin-like molecules also play an important role in HHV-7-cell surface interactions required for infection and that gB represents one of the HHV-7 envelope proteins involved in the adsorption of virus-to-cell surface proteoglycans.  相似文献   

4.
The prevalence of human herpesvirus 8 (HHV-8; Kaposi's sarcoma [KS] herpesvirus) infection was determined by IFA in 297 persons living in Brazil and Colorado. The prevalence of antibody to HHV-8 in human immunodeficiency virus (HIV) type 1-seropositive gay men with and without KS was similar in Brazil and Colorado. In Brazil, the prevalence of HHV-8 antibody was significantly greater in HIV-1-seronegative gay men than in HIV-1-seronegative male intravenous drug users. HHV-8-seropositive Brazilian gay men who had a clinical diagnosis of KS or who were infected with HIV-1 had significantly higher titers of HHV-8 antibody than did HHV-8-seropositive, HIV-1-seronegative Brazilian gay men. These findings provide further support for the association between HHV-8 infection and KS and suggest that, as in the United States, HHV-8 infection is transmitted sexually in Brazil.  相似文献   

5.
It remains controversial whether human T lymphotropic virus type I (HTLV-I) coinfection leads to more rapid progression of human immunodeficiency virus (HIV) disease in dually infected individuals. To investigate whether HTLV-I infection of certain cells can modulate HIV-1 infection of surrounding cells, primary CD4(+) T cells were treated with cell-free supernatants from HTLV-I-infected MT-2 cell cultures. The primary CD4+ T cells became resistant to macrophage (M)-tropic HIV-1 but highly susceptible to T cell (T)-tropic HIV-1. The CC chemokines RANTES (regulated on activation, normal T cell expressed and secreted), macrophage inflammatory protein (MIP)-1alpha, and MIP-1beta in the MT-2 cell supernatants were identified as the major suppressive factors for M-tropic HIV-1 as well as the enhancers of T-tropic HIV-1 infection, whereas soluble Tax protein increased susceptibility to both M- and T-tropic HIV-1. The effect of Tax or CC chemokines on T-tropic HIV-1 was mediated, at least in part, by increasing HIV Env-mediated fusogenicity. Our data suggest that the net effect of HTLV-I coinfection in HIV-infected individuals favors the transition from M- to T-tropic HIV phenotype, which is generally indicative of progressive HIV disease.  相似文献   

6.
Blood samples from human immunodeficiency virus (HIV)-positive patients were monitored for cytomegalovirus (CMV), human herpesvirus 6 (HHV-6), and HHV-7 by PCR. We detected CMV in 17% of the patients, HHV-6 in 6%, and HHV-7 in 3%. The viral loads of CMV were significantly higher than those of HHV-6 (P = 0.007) or HHV-7 (P = 0.01). Detection of CMV and HHV-6 was associated with low and high CD4 counts, respectively.  相似文献   

7.
CD4+ cells derived from the human cell lines U87MG and SCL1 cannot be infected by human immunodeficiency virus type 1 (HIV-1) or fuse with cells expressing the HIV-1 envelope. This block was complemented in heterokaryons with HeLa cells and probably reflects the absence of cellular factors necessary for membrane fusion. Since U87MG cells expressing CD4 are permissive to HIV-2, distinct cellular factors could be required for fusion mediated by two related human retroviruses.  相似文献   

8.
The binding of human immunodeficiency virus type 1 (HIV-1) (Hx10) virions to two different cell lines was analyzed by using a novel assay based on the detection, by anti-HLA-DR-specific antibodies, of HLA-DR+ virus binding to HLA-DR- cells. Virion attachment to the CD4+-T-cell line A3.01 was highly CD4 dependent in that it was potently inhibited by CD4 monoclonal antibodies (MAbs), and little virus binding to the CD4- sister A2.01 line was observed. By contrast, virion binding to HeLa cells expressing moderate or high levels of CD4 was equivalent to, or lower than, binding to wild-type CD4- HeLa cells. Moreover, several CD4 MAbs did not reduce, but enhanced, HIV-1 attachment to HeLa-CD4 cells. CD4 was required for infection of HeLa cells, however, demonstrating a postattachment role for this receptor. MAbs specific for the V2 and V3 loops and the CD4i epitope of gp120 strongly inhibited virion binding to HeLa-CD4 cells, whereas MAbs specific for the CD4bs and the 2G12 epitopes enhanced attachment. Despite this, all gp120- and gp41-specific MAbs tested neutralized infectivity on HeLa-CD4 cells. HIV-1 attachment to HeLa cells was only partially inhibited by MAbs specific for adhesion molecules present on the virus or target cells but was completely blocked by polyanions such as heparin, dextran sulfate, and pentosan sulfate. Treatment of HeLa-CD4 cells with heparinases completely eliminated HIV attachment and infection, strongly implicating cell surface heparans in the attachment process. CD4 dependence for HIV-1 attachment to target cells is thus highly cell line specific and may be replaced by other ligand-receptor interactions.  相似文献   

9.
Human herpesvirus 6 (HHV-6) is a human herpesvirus isolated from patients with various lymphoproliferative disorders and acquired immunodeficiency syndrome (AIDS). The prevalence of HHV-6 infection and its correlation as a cofactor in pathogenicity of HIV infection was investigated in serum samples from 365 healthy volunteers at various age groups, 50 persons at risk for HIV-1 infection, and 90 HIV-1 seropositive individuals. Sera were screened and titrated for antibodies against HHV-6 by a standard indirect immunofluorescence assay on an acetone fixed HHV-6 infected HSB2 cells. The data show high prevalence of HHV-6 in Thailand (71.7%) and the infection is acquired early in life. Prevalence of anti-HHV-6 IgG antibodies was not strikingly different among people at risk for HIV infection, asymptomatic HIV-1 infected cases, and aged-matched controls with low risk for HIV-1 infection. The AIDS cases showed high titers of anti-HHV-6 IgG antibody and high rates for presence of anti-HHV-6 IgM antibody (33.3%) which suggests higher prevalence of HHV-6 infection by either reactivation of an earlier HHV-6 infection or a new primary infection.  相似文献   

10.
The vast majority of in vitro experiments testing the cytotoxic T lymphocytes (CTL) activity in HIV infection has been performed with target cells consisting of autologous EBV-transformed B lymphoblastoid cell lines (B-LCLs) expressing Human immunodeficiency virus type I (HIV-1) proteins. However data concerning the lysis of primary CD4+ T lymphocytes expressing HIV-1 antigens by CTLs is still lacking. To study the CTL activity against such primary targets, we used a system involving PBMCs of an HIV+ asymptomatic patient (PT) as effector cells and the CD4+ lymphocytes or B-LCLs of his healthy HLA-identical twin brother (HTW) as target cells. These syngeneic targets were either infected with recombinant vaccinia virus containing HIV-1 gag gene (gag-vac), or coated with HIV-1 gag peptides. We demonstrate in this study that PT CTLs (which were CD3+, CD4-, CD8+, TCRalphabeta+, TCRgammadelta-, CD56-) specifically lysed both types of syngeneic target cells expressing gag-vac; however, CD4+ T cells expressing HIV gag proteins were lysed less efficiently than B-LCLs expressing the same HIV epitopes. On the other hand, no specific lysis was detected when the target cells were uninfected or infected by wild-type vaccinia virus.  相似文献   

11.
A chimeric protein consisting of CXC-chemokine receptor 4 (CXCR4) and the green fluorescent protein (GFP) was used for studying receptor localization and trafficking in real time in stably transduced HeLa, U-937, CEM, and NIH/3T3 cells. CXCR4-GFP was fully active as a co-receptor in mediating human immunodeficiency virus (HIV) entry. Both CXCR4 and CXCR4-GFP were found to undergo significant spontaneous endocytosis. Only 51.5 +/- 7.8% of receptor molecules were found on the plasma membrane in CD4-positive cells, 43.9 +/- 8.5% were found in CD4-negative HeLa cells, 75.6 +/- 9.7% were found in U-937 cells, 72.5 +/- 7.9 were found in CEM cells, and almost none were found in in NIH/3T3 cells. Stromal cell-derived factor-1alpha induced rapid endocytosis of cell surface receptor molecules. A significant part of CXCR4 was targeted to lysosomes upon binding of the ligands, and recycling of internalized CXCR4 was not efficient. Only about 30% of receptor molecules recycled back to the cell surface in HeLa cells, 5% recycled in U937, and 10% recycled in CEM cells, suggesting that the protective effect of chemokines against HIV infection can be attributed not only to competition for binding but also to depletion of the co-receptor molecules from the cell surface. Envelope glycoprotein gp120 of syncytia-inducing/lymphocyte tropic HIV-1 strains induced rapid internalization of CXCR4 in both CD4-negative and CD4-positive cells, suggesting that gp120 is a high affinity ligand of CXCR4.  相似文献   

12.
A novel human T cell line (SALT-3) was established from the pleural effusion of a patient with adult T cell leukemia (ATL) of lymphoma type. SALT-3 showed atypical T cell markers such as CD1-CD2-CD3-CD4+CD5+CD7+CD8-CD19-CD20-CD25+HLA-DR+. T cell receptor alpha/beta and gamma/delta were undetectable. Human T cell lymphotropic virus type 1 (HTLV-I) particles were seen on SALT-3 cells by electron microscopic analysis. HTLV-I gag p19, proviral DNA and mRNA of HTLV-I genes were also detected in the cells. Chromosome analysis showed abnormal karyotypes as 47, XY, partial trisomy of No.3 chromosome, and trisomy of No. 7 chromosome. Furthermore, SALT-3 were susceptible to the infection of human immunodeficiency virus type 1 (HIV-1) and the cells were rapidly killed after HIV-1 infection. This newly established HTLV-I-infected human T cell line would be a useful tool to study biological activities of atypical type of ATL cells and to examine the cytotoxic effects of HIV-1 and it's modulators.  相似文献   

13.
The ability of CD8 T cells derived from human immunodeficiency virus (HIV)-infected patients to produce soluble HIV-suppressive factor(s) (HIV-SF) has been suggested as an important mechanism of control of HIV infection in vivo. The C-C chemokines RANTES, MIP-1 alpha and MIP-1 beta were recently identified as the major components of the HIV-SF produced by both immortalized and primary patient CD8 T cells. Whereas they potently inhibit infection by primary and macrophage-tropic HIV-1 isolates, T-cell line-adapted viral strains tend to be insensitive to their suppressive effects. Consistent with this discrepancy, two distinct chemokine receptors, namely, CXCR4 (ref. 7) and CCR5 (ref. 8), were recently identified as potential co-receptors for T-cell line-adapted and macrophage-tropic HIV-1 isolates, respectively. Here, we demonstrate that the third hypervariable domain of the gp 120 envelope glycoprotein is a critical determinant of the susceptibility of HIV-1 to chemokines. Moreover, we show that RANTES, MIP-1 alpha and MIP-1 beta block the entry of HIV-1 into cells and that their antiviral activity is independent of pertussis toxin-sensitive signal transduction pathways mediated by chemokine receptors. The ability of the chemokines to block the early steps of HIV infection could be exploited to develop novel therapeutic approaches for AIDS.  相似文献   

14.
To evaluate the feasibility of using transgenic rabbits expressing CCR5 and CD4 as a small-animal model of human immunodeficiency virus type 1 (HIV) disease, we examined whether the expression of the human chemokine receptor (CCR5) and human CD4 would render a rabbit cell line (SIRC) permissive to HIV replication. Histologically, SIRC cells expressing CD4 and CCR5 formed multinucleated cells (syncytia) upon exposure to BaL, a macrophagetropic strain of HIV that uses CCR5 for cell entry. Intracellular viral capsid p24 staining showed abundant viral gene expression in BaL-infected SIRC cells expressing CD4 and CCR5. In contrast, neither SIRC cells expressing CD4 alone nor murine 3T3 cells expressing CCR5 and CD4 exhibited significant expression of p24. These stably transfected rabbit cells were also highly permissive for the production of virions upon infection by two other CCR5-dependent strains (JR-CSF and YU-2) but not by a CXCR4-dependent strain (NL4-3). The functional integrity of these virions was demonstrated by the successful infection of human peripheral blood mononuclear cells (PBMC) with viral stocks prepared from these transfected rabbit cells. Furthermore, primary rabbit PBMC were found to be permissive for production of infectious virions after circumventing the cellular entry step. These results suggest that a transgenic rabbit model for the study of HIV disease may be feasible.  相似文献   

15.
To evaluate conserved structures of the surface gp120 subunit (SU) of the human immunodeficiency virus type 1 (HIV-1) envelope in gp120-cell interactions, we designed and produced an HIV-1 IIIB (HXB2R) gp120 carrying a deletion of amino acids E61 to S85. This sequence corresponds to a highly conserved predicted amphipathic alpha-helical structure located in the gp120 C1 region. The resultant soluble mutant with a deleted alpha helix 1 (gp120 DeltaalphaHX1) exhibited a strong interaction with CXCR4, although CD4 binding was undetectable. The former interaction was specific since it inhibited the binding of the anti-CXCR4 monoclonal antibody (12G5), as well as SDF1alpha, the natural ligand of CXCR4. Additionally, the mutant gp120 was able to bind to CXCR4(+)/CD4(-) cells but not to CXCR4(-)/CD4(-) cells. Although efficiently expressed on cell surface, HIV envelope harboring the deleted gp120 DeltaalphaHX1 associated with wild-type transmembrane gp41 was unable to induce cell-to-cell fusion with HeLa CD4(+) cells. Nevertheless, the soluble gp120 DeltaalphaHX1 efficiently inhibited a single round of HIV-1 LAI infection in HeLa P4 cells, with a 50% inhibitory concentration of 100 nM. Our data demonstrate that interaction with the CXCR4 coreceptor was maintained in a SUgp120 HIV envelope lacking alphaHX1. Moreover, in the absence of CD4 binding, the interaction of gp120 DeltaalphaHX1 with CXCR4 was sufficient to inhibit HIV-1 infection.  相似文献   

16.
T cell line-tropic (T-tropic) HIV type 1 strains enter cells by interacting with the cell-surface molecules CD4 and CXCR4. We have generated transgenic mice predominantly expressing human CD4 and CXCR4 on their CD4-positive T lymphocytes (CD4+ T cells). Their primary thymocytes are susceptible to T-tropic but not to macrophage-tropic HIV-1 infection in vitro, albeit with a viral antigen production less efficient than human peripheral blood mononuclear cells. Interestingly, even without HIV infection, transgenic mice display a CD4+ T cell depletion profile of peripheral blood reminiscent of that seen in AIDS patients. We demonstrate that CD4+ T cell trafficking in transgenic mice is biased toward bone marrow essentially due to CXCR4 overexpression, resulting in the severe loss of CD4+ T cells from circulating blood. Our data suggest that CXCR4 plays an important role in lymphocyte trafficking through tissues, especially between peripheral blood and bone marrow, participating in the regulation of lymphocyte homeostasis in these compartments. Based on these findings, we propose a hypothetical model in which the dual function of CXCR4 in HIV-1 infection and in lymphocyte trafficking may cooperatively induce progressive HIV-1 infection and CD4+ T cell decline in patients.  相似文献   

17.
The human chemokine receptors CCR5 and CXCR4 have emerged as the predominant cofactors, along with CD4, for cellular entry of HIV-1 in vivo whereas the contribution of other chemokine receptors to HIV disease has not been yet determined. CCR5-specific (R5) viruses predominate during primary HIV-1 infection whereas viruses with specificity for CXCR4 (R5/X4 or X4 viruses) often emerge in late stages of HIV disease. The evolution of X4 viruses is associated with a rapid decline in CD4+ T cells, although a causative relationship between viral tropism and CD4+ T cell depletion has not yet been proven. To rigorously test this relationship, we assessed CD4+ T cell depletion in suspensions of human peripheral blood mononuclear cells and in explants of human lymphoid tissue on exposure to paired viruses that are genetically identical (isogenic) except for select envelope determinants specifying reciprocal tropism for CXCR4 or CCR5. In both systems, X4 HIV-1 massively depleted CD4+ lymphocytes whereas matched R5 viruses depleted such cells only mildly despite comparable viral replication kinetics. These findings demonstrate that the coreceptor specificities of HIV-1 are a causal factor in CD4+ T cell depletion ex vivo and strongly support the hypothesis that the evolution of viral envelope leading to usage of CXCR4 in vivo accelerates loss of CD4+ T cells, causing immunodeficiency.  相似文献   

18.
The binding of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein, gp120, to its cell surface receptor, CD4, represents a molecular interaction involving distinct alterations in protein structure. Consequently, the pattern of epitopes presented on the gp120-CD4 complex should differ from those on free gp120. To investigate this concept, mice were immunized with covalently crosslinked complexes of viral HIV-1IIIBgp120 and soluble CD4. Two monoclonal antibodies (MoAbs) obtained from the immunized mice exhibited a novel epitope specificity. The MoAbs were marginally reactive with HIV-1IIIBgp120, highly reactive with gp120-CD4 complexes, and unreactive with soluble CD4. The same pattern of reactivity was seen in solid-phase assays using HIV-1(451)gp120. A similar specificity for complexes was evident in flow cytometry experiments, in which MoAb reactivity was dependent upon the attachment of gp120 to CD4-positive cells. In addition, MoAb reactivity was detected upon the interaction of CD4 receptors with purified HIV-1IIIB virions. Notably, seroantibodies from HIV-positive individuals competed for MoAb binding, indicating that the epitope is immunogenic in humans. The results demonstrated that crosslinked gp120-CD4 complexes elicit antibodies to cryptic gp120 epitopes that are exposed during infection in response to receptor binding. These findings may have important implications for the consideration of HIV envelope-receptor complexes as targets for virus neutralization.  相似文献   

19.
CD4+ T lymphocytes of individuals infected with human immunodeficiency virus type 1 (HIV-1) exhibit a qualitative defect in their ability to mount memory responses to previously encountered antigens although their responses to mitogens remain normal. T cells responsible for memory responses can be distinguished from naive T cells based on differential expression of isoforms of the tyrosine phosphatase CD45. It has been suggested that memory CD4+ T cells from infected individuals have a greater virus burden than naive CD4+ T cells and that this accounts for the loss of recall responses in infected individuals. However, it has been unclear whether naive and memory T cells are equally susceptible to infection and to the cytopathic effects of the virus. We therefore infected highly purified resting naive and memory CD4+ T cells from HIV-1-seronegative individuals with HIV-1(LAI). Infected cells were then stimulated with phytohemagglutinin to render them permissive for viral replication. Cell viability and growth rate were monitored for 8 to 10 days as indicators of cytopathic effects induced by HIV-1(LAI). Our results indicated that naive and memory CD4+ T cells display marked differences in susceptibility to the cytopathic effects induced by HIV-1(LAI), infection. The cytopathic effects induced by HIV-1(LAI) were much more severe in memory CD4+ T cells than in naive CD4+ T cells. Differential cytopathic effects in naive and memory T cells were not due to differences in virus entry into and replication in these cell populations. Rather, memory cells were more susceptible to cytopathic effects. Pronounced cytopathic effects in memory cells were clearly detectable at 7 day postinfection. Cell death occurred at the single-cell level and was not accompanied by syncytium formation. The growth rate of infected memory CD4+ T cells was also severely compromised compared to that of naive CD4+ T cells, whereas the growth rates of both uninfected naive and memory CD4+ T cells were approximately the same. At least a portion of the dying cells exhibited biochemical changes characteristic of apoptosis. These results suggest that the selective functional defects present in the memory CD4+ T-cell subset of HIV-1-infected individuals may in part be the result of the greater susceptibility of memory T cells to cytopathic effects induced by HIV-1.  相似文献   

20.
The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gp120 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 A resolution of an HIV-1 gp120 core complexed with a two-domain fragment of human CD4 and an antigen-binding fragment of a neutralizing antibody that blocks chemokine-receptor binding. The structure reveals a cavity-laden CD4-gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion. Our results provide a framework for understanding the complex biology of HIV entry into cells and should guide efforts to intervene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号