首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure and crystalline behavior of the ternary system ZnO-B2O3-P2O5 glasses were investigated by means of X-ray diffraction (XRD) and infrared Raman spectra. The research showed that number of the planar [BO3] units increases with the increase of B2O3 content. When the B2O3 content is above ≥10 mol %, the relative content of planar [BO3] units increases rapidly and causes weakening of the glass structure and decrease in the chemical stability. In the crystallized glasses the predominant crystal phase Zn2P2O7 decreases with the increase of B2O3 content, while the crystal phase BPO4 increases with it, which cause the declining of chemical stability and the decrease of thermal coefficients of expansion.  相似文献   

2.
A method is proposed for local crystallization of glasses under laser irradiation. This method makes it possible to nucleate and grow microcrystals with a size distribution similar to a monodisperse distribution for several fractions of a second in any glass region chosen in advance. It is demonstrated using glasses in the La2O3-B2O3-GeO2 system as an example that the crystallization of the stillwellite-like phase LaBGeO5 with the composition close to the composition of the initial glass is observed in the glass under irradiation with the copper vapor laser operating in the high-speed pulse modulation mode. Strips (up to ~300 μm) produced at a specified depth from the glass surface contain extended regions consisting of uniformly distributed crystals, which have almost identical sizes, exhibit a pronounced faceting, and are identified using X-ray diffraction. The size and the number of crystals can be changed over a wide range by varying laser treatment conditions. This opens up the way to the design of new glass-ceramic materials in which the location of the crystalline phase in the glass bulk is controlled by a developer.  相似文献   

3.
This study discusses the potential of utilizing waste cockleshell derived-CaCO3 (CS) as filler in polypropylene (PP). Mineral fillers were prepared from cockleshell-derived CaCO3 and used to fill polypropylene. The composites were prepared by melt blending and fabricated by injection and compression molding techniques. The effects of filler on crystal structure, crystallization and thermal degradation characteristics of filled polypropylene composites were elucidated. The cockleshell filler promoted the formation of the β-crystalline phase in PP, which improved the rigidity and toughness of the composites. However, stearic acid treatments on the filler would significantly affect the nucleation process and therefore hindered crystallization. Acceleration in thermal degradation of PP was also noted with increasing filler loading.  相似文献   

4.
Synthetic spinels of the system MgO-Cr2O3-Al2O3-Fe2O3 are considered and the desirability of organizing their production for the refractory industry is demonstrated. Translated from Novye Ogneupory, No. 6, pp. 32–35, June 2008.  相似文献   

5.
Summary The comb copolymer poly(acrylic acid) (PAA) grafted methoxyl poly(ethylene oxide) (MPEO) (PAA-g-MPEO) as dispersant was used in aqueous CaCO3 suspensions. The PAA-g-MPEO was adsorbed onto CaCO3particle surfaces due to the electrostatic attraction. The adsorbed amount increased with increasing PAA-g-MPEO content. The CaCO3 adsorbed PAA-g-MPEO displayed negative zeta potential. The zeta potential was more negative with increasing PAA-g-MPEO content. Addition of PAA-g-MPEO, the conductivity of aqueous CaCO3 suspensions decreased firstly, and then increased with increasing PAA-g-MPEO content. Compared to that of aqueous CaCO3 suspensions, the viscosity of aqueous CaCO3/PAA-g-MPEO suspension reduced remarkably, and the liquidity of the suspensions was improved. The dispersion of CaCO3 particles in aqueous CaCO3/PAA-g-MPEO suspensions was significantly improved due to electrostatic repulsions and steric hindrance between CaCO3 particles adsorbed PAA-g-MPEO.  相似文献   

6.
The effects of anionic surfactant on the morphology and crystallization of calcium carbonate precipitated from CaCl2 and Na2CO3 were investigated. Although reaction temperature did not have an effect on the morphology of calcium carbonate, it did have an effect on the cluster size. The cluster size became bigger with high reaction temperature. With the addition of sodium dodecyl benzenesulfonic acid (SDBS), the morphology of precipitated calcium carbonate changed from cubic to porous spheres with over 98% of the crystal phase transformed from calcite to vaterite. The analysis of precipitates formed by the reaction of CaCl2 solution (from limestone (CaO 50% content)) and Na2CO3 found that the morphology of precipitated calcium carbonate changed from cubic to spherical, and the crystal phase changed from calcite to over 94% vaterite with the addition of sodium dodecyl benzenesulfonic acid. These vaterite structures were solid spheres rather than hollow ones.  相似文献   

7.
The electrical conductivity of chalcogenide semiconductor films in the CuI-AsI3-As2Se3 and CuI-SbI3-As2Se3 systems, which have been prepared by chemical deposition from mono-n-butylamine, has been studied as a function of the temperature and film composition. It has been established that the electrical conductivity of the CuI-AsI3-As2Se3 and CuI-SbI3-As2Se3 films is predominantly determined by the copper iodide content. It has been demonstrated that the electrical properties of the chalcogenide glasses and the related films are characterized by the same values to within the experimental error, which is explained by the same model of dissolution of vitreous semiconductors in amines with the retention of the electrical properties of chalcogenide glasses after the deposition of films from their solutions.  相似文献   

8.
9.
Styrene butadiene rubber (SBR) as matrix was reinforced separately with 9, 15 and 21 nm sizes of CaCO3, which were synthesized by matrix mediated growth technique. The mixing and compounding was done on two-roll mill and sheets were prepared in compression molding machine. The effect of nature and loading of nano CaCO3 on these rubber nanocomposites was investigated thoroughly by different characterizations such as DSC, TGA, XRD, and mechanical properties. An appreciable increase in glass transition temperature has been observed from DSC study. 9 nm sizes of CaCO3/SBR composites show more increment in Tg as compared to pristine SBR as well as different sizes of CaCO3 filled SBR. This increment in Tg is due to restricted mobility of nano CaCO3 filled SBR nanocomposites. XRD study of nanocomposites showed that nano CaCO3 dispersed uniformly throughout the matrix because of the small peak at lower 2θ. This uniform dispersion of nano CaCO3 contributes towards the higher mechanical properties of rubber composites. From TGA study, it was observed that as the size of CaCO3 reduces the thermal stability increases as compared to pristine SBR. The other results of these rubber nanocomposites were compared with commercial CaCO3 filled SBR. Partly this research paper has been presented in International conference on ‘RubberChem 2006, Dec 5–6, 2006, Munich, Germany.  相似文献   

10.
11.
The influence of the thermal prehistory of precursors on the phase transformations occurring in the MgO-SiO2-H2O(NaOH) system during hydrothermal synthesis of nanotubular magnesium hydrosilicates Mg3Si2O5(OH)4 with a chrysotile structure is investigated by in situ Calvet calorimetry. It is demonstrated that the preliminary dehydration of the initial solid-phase reactants substantially affects the kinetics of their hydration and subsequent formation of nanotubes with a chrysotile structure.  相似文献   

12.
The production of isophthalic acid (IPA) from the oxidation of m-xylene (MX) by air is catalyzed by H3PW12O40 (HPW) loaded on carbon and cobalt. We used H2O2 solution to oxidize the carbon to improve the catalytic activity of HPW@C catalyst. Experiments reveal that the best carbon sample is obtained by calcining the carbon at 700 °C for 4 h after being impregnated in the 3.75% H2O2 solution at 40 °C for 7 h. The surface characterization displays that the H2O2 modification leads to an increase in the acidic groups and a reduction in the basic groups on the carbon surface. The catalytic capability of the HPW@C catalyst depends on its surface chemical characteristics and physical property. The acidic groups play a more important part than the physical property. The MX conversion after 180 min reaction acquired by the HPW@C catalysts prepared from the activated carbon modified in the best condition is 3.81% over that obtained by the HPW@C catalysts prepared from the original carbon. The IPA produced by the former is 46.2% over that produced by the latter.  相似文献   

13.
The EPR spectra of compounds in the LaAlO3-La0.67Sr0.33Mn y O3 system at a frequency of 9.4 GHz have been investigated at the temperatures T = 77 and 300 K as a function of the manganese concentration y (y = 0.015, 0.030, 0.080). It has been revealed that, in the paramagnetic state at y = 0.015, there exist isolated Mn2+ and Mn4+ ions, which has been confirmed by simulating the EPR spectra. The parameters of the EPR spectra have been determined. The effective magnetic moments μeff of the Mn2+ and Mn4+ ions have been calculated from the EPR spectra. It has been demonstrated that an increase in the Mn concentration leads to a decrease in the number of isolated ions and to the formation of new spin clusters. This manifests itself in the predominance of a broad line with weak traces of the hyperfine structure due to the isolated manganese ions.  相似文献   

14.
15.
Vanadium oxide supported on zirconia modified with WO3 was prepared by adding Zr(OH)4 powder into a mixed aqueous solution of ammonium metavanadate and ammonium metatungstate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed by using FTIR, Raman, and XRD. In the case of calcination temperature at 773 K, for samples containing low loading V2O5 below 18 wt%, vanadium oxide was in a highly dispersed state, while for samples containing high loading V2O5 equal to or above 18 wt%, vanadium oxide was well crystallized due to the high V2O5 loading on the surface of ZrO2. The ZrV2O7 compound was formed through the reaction of V2O5 and ZrO2 at 873 K, and the compound decomposed into V2O5 and ZrO2 at 1,073 K, these results were confirmed by FTIR and XRD. Catalytic tests for 2-propanol dehydration and cumene dealkylation have shown that the addition of WO3 to V2O5/ZrO2 enhanced both catalytic activity and acidity of V2O5-WO3/ZrO2 catalysts. The variations in catalytic activities for both reactions are roughly correlated with the changes of acidity.  相似文献   

16.
The results of the modification of AG-OV-1 activated carbon under various conditions (by atmospheric oxygen at elevated temperatures and by hydrogen peroxide or ozone) are given. The effect of the used modifier on changes in the porosity, surface state, and adsorption capacity of activated carbon is evaluated.  相似文献   

17.
The direct dissolution of UO2 in TBP-HNO3 complex by microwave heating in this study suggests the possibility of dissolving spent nuclear fuels. This new technique offers many benefits for reduction in aqueous and organic waste generation and improved efficiency of chemical processing. The dissolution rate of UO2 particles with TBP-HNO3 complex by microwave assisted heating is highly dependent on the temperature and the particle size.  相似文献   

18.
High density polyethylene (HDPE), calcium carbonate (CaCO3), and ethylene vinyl acetate (EVA) ternary reinforced blends were prepared by melt blend technique using a twin screw extruder. The thermal properties of these prepared ternary blends were investigated by differential scanning calorimetry. The effect of EVA loading on the melting temperature (T m) and the crystallization temperature (T C) was evaluated. It was found that the expected heterogeneous nucleating effect of CaCO3 was hindered due to the presence of EVA. The melt viscosities of the ternary reinforced blends were affected by the % loading of CaCO3, EVA, and vinyl acetate content. Viscoelastic analysis showed that there is a reduction of the storage modulus (G′) with increasing of EVA loading as compared to neat HDPE resin or to HDPE/CACO3 blends only. The morphology of the composites was characterized by scanning electron microscopy (SEM). The dispersion and interfacial interaction between CaCO3 with EVA and HDPE matrix were also investigated by SEM. We observed two main types of phase structures; encapsulation of the CaCO3 by EVA and separate dispersion of the phases. Other properties of ternary HDPE/CaCO3/EVA reinforced blends were investigated as well using thermal, rheological, and viscoelastic techniques.  相似文献   

19.
The polytherms of ice melting in sections of the Ca(NO3)2-Mg(NO3)2-CO(NH2)2-H2O system with different component ratios were studied in the temperature interval from 0 to −40°C. A series of nitrate and nitrate-carbonate reagents that are promising for the creation of anti-acing reagents were found, which form eutectics with ice at temperatures from −25 to −39°C. Their properties, viz., melting properties with respect to ice and corrosiveness on metals and alloys, were determined. An effective corrosion inhibitor was selected.  相似文献   

20.
Triply and doubly charged states of europium are revealed by 151Eu Mössbauer spectroscopy in the structure of glasses of the composition (mol %) 19.5Al2O3, 31.5SiO2, 26.5MnO, and 22.5Eu2O3. The isomer shifts in the Mössbauer spectra of Eu3+ and Eu2+ ions in the structure of glasses differ from the isomer shifts in the spectra of the Eu2O3 and EuO compounds. This difference is explained by the fact that the electron density at 151Eu nuclei is affected by the manganese and aluminum atoms, which are not bound directly to the europium atoms. The broadening of the spectra of the Eu2+ ions in glasses is caused by the nonuniform isomer shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号