共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of spray forming on the microstructure and properties of a high chromium white cast iron 总被引:1,自引:0,他引:1
The effect of spray forming on the structure and properties of a 17% Cr, 2.5% C white cast iron is described and compared with conventionally cast material of the same composition. Spray forming resulted in a substantial reduction in microstructural scale (eutectic (Cr,Fe)7C3 fields of up to 500 m in conventionally cast material were replaced by discrete carbides of typically 2–8 m diameter in the spray cast deposit). Carbide size varied as a function of position in the spray deposit, being approximately twice the size at mid section compared with either surface or interface with the collector. Carbide size was not altered by the gas to metal ratio used to atomise the spray. Spray forming increased transverse rupture stress and work of fracture by 50% compared with the conventionally cast material. Forging of the spray formed material was possible at 950°C, without inducing carbide fracture or void formation in the matrix. Quenching into iced water from 300°C induced extensive macroscopic cracking in the conventionally cast material whereas 400°C was required in the spray cast material to induce similar damage. The relationship between processing, microstructure and mechanical properties is discussed. 相似文献
2.
3.
Zhongli Liu Yanxiang Li Xiang Chen Kaihua Hu 《Materials Science and Engineering: A》2008,486(1-2):112-116
In this paper, high boron white cast iron, a new kind of wear-resistant white cast iron was developed, and its microstructure and mechanical properties were studied. The results indicate that the high boron white cast iron comprises a dendritic matrix and an interdendritic eutectic boride in as-cast condition. The distribution of eutectic boride with a chemical formula of M2B (M represents Cr, Fe or Mn) and with a microhardness of HV2010 is much like that of carbide in high chromium white cast iron. The matrix includes martensite and a small amount of pearlite. After quenching in air, the matrix changes to martensite, but the morphology of boride remains almost unchanged. In the course of austenitizing, a secondary precipitation with the size of about 1 μm appears, but when tempered at different temperature, another secondary precipitation with the size of several tens of nanometers is found. Both secondary precipitations, which all forms by means of equilibrium segregation of boron, have a chemical formula of M23(C,B)6. Compared with high chromium white cast iron, the hardness of high boron white cast iron is almost similar, but the toughness is increased a lot, which attributes to the change of matrix from high carbon martensite in the high chromium white cast iron to low carbon martensite in the high boron white cast iron. Moreover, the high boron white cast iron has a good hardenability. 相似文献
4.
5.
It is attempted to enhance the impact toughness of industrially used high chromium white cast iron (WCI) without sacrificing wear resistance. The microstructure is engineered by cyclic annealing to obtain features such as duplex grain matrix, where austenite envelops ferrite grain, refined M7C3 carbide. The newly cast and heat-treated alloy shows remarkable impact toughness i.e. 13J with improved wear resistance. The fracture micro-mechanism is studied through extensive scanning electron microscopy and it is ascertained that enhanced impact toughness results from crack arrest at duplex grain boundaries. A few other toughness enhancing features are also discussed. The results are compared with standard ASTM grade Class-III high chromium WCI and are found to be encouraging. 相似文献
6.
以TiCp粉末和水雾化Cr15高铬铸铁粉末为原料,采用粉末冶金液相烧结技术制备TiCp增强高铬铸铁复合材料。研究了TiCp含量对高铬铸铁的物相组成、显微组织和力学性能的影响。研究结果表明,全致密的TiCp增强高铬铸铁基体复合材料的构成相为TiC、M7C3型碳化物、马氏体和少量奥氏体;随着TiCp添加量增大,金属基体逐步呈孤岛状,并在其中析出越来越多的M7C3型碳化物,同时TiCp逐步呈连续网状分布;同时,其硬度稳步提升,而抗弯强度和冲击韧性降低。当TiCp添加量为20wt%时烧结态复合材料具有最佳综合力学性能。此时硬度为HRC 66.8 ,冲击韧性为6.86 J/cm2,抗弯强度为1 343.10 MPa。当TiCp添加量为25wt%时硬度达到最大值HRC 67.20 。 相似文献
7.
A billet of hypoeutectic high‐chromium white iron (19% Cr, 2.5% C) was spray formed using Gas‐to‐Metal Ratios (GMR) of 0.9, 1.0, and 1.1. Microstructural studies and dry sand rubber wheel abrasion tests were carried out, on the one hand, to compare between the spray formed and conventionally cast material and, on the other hand, to investigate the relationship between gas‐to‐metal‐ratio, eutectic carbide morphology and abrasion resistance. The spray formed material was characterized by a considerably finer carbide morphology (max. ?30 μm) than the conventionally cast material (max. 100–200 μm). The coarser carbide morphology is believed to be responsible for the superior abrasion resistance of the conventionally cast material. Although the carbide morphology of the spray formed material was only moderately influenced by the changes in the gas‐to‐metal‐ratio, there was a clear improvement in the abrasion resistance with decreasing gas‐to‐metal‐ratio. The improvement correlated with a decrease in the fraction of very fine (<1.5 μm) carbides, rather than with an increase in the mean carbide size. 相似文献
8.
利用锻造方法并结合锻后适当的热处理工艺可大幅度提高铬合金白口铸铁的冲击韧性.采用热望性镦粗试验方法,对不同碳含量中铬合金白口铸铁的热塑性、碳对中铬白口铸铁热塑性的影响规律进行了研究,分析了不同热处理工艺对其锻后组织和性能的影响,并提出了可明显提高锻造中铬合金白口铸铁抗冲击磨损性能的热处理工艺参数.研究表明:含碳量为1.85%-2.59%的中铬合金自口铸铁在850-1130℃的温度范围内,具有良好的塑性变形能力,且随碳含量的增加,中铬白口铸铁的热塑性下降,其主要原因是碳含量不同所引起的组织中共晶碳化物的数量的改变所致. 相似文献
9.
A transformation toughening white cast iron 总被引:8,自引:0,他引:8
An experimental white cast iron with the unprecedented fracture toughness of 40 MPa m1/2 is currently being studied to determine
the mechanisms of toughening. This paper reports the investigation of the role of strain-induced martensitic (SIM) transformation.
The dendritic microconstituent in the toughened alloy consists primarily of retained austenite, with precipitated M7C3 carbides
and some martensite. Refrigeration experiments and differential scanning calorimetry (DSC) were used to demonstrate, firstly,
that this retained austenite has an "effective" sub-ambient MS temperature and, secondly, that SIM transformation can occur
at ambient temperatures. Comparison between room temperature and elevated temperature KIc tests showed that the observed SIM
produces a transformation toughening response in the alloy, contributing to, but not fully accounting for, its high toughness.
SIM as a mechanism for transformation toughening has not previously been reported for white cast irons. Microhardness traverses
on crack paths and X-ray diffraction (XRD) on fracture surfaces confirmed the interpretation of the KIc experiments. Further
DSC and quantitative XRD showed that, as heat-treatment temperature is varied, there is a correlation between fracture toughness
and the volume fraction of unstable retained austenite.
This revised version was published online in November 2006 with corrections to the Cover Date. 相似文献
10.
为研发耐磨性能优良、成本相对低廉的高铬铸铁,本文分别以亚共晶、过共晶的水雾化Cr15高铬铸铁粉末为原料,采用超固相线液相烧结工艺制备了烧结高铬铸铁(SHCCI),并对其显微组织、力学性能和冲击磨粒磨损工况下的耐磨性能进行对比研究。结果表明,烧结高铬铸铁主要由M7C3碳化物、马氏体和奥氏体组成;在亚共晶烧结高铬铸铁中,通过电解腐蚀萃取的M7C3碳化物三维形貌呈珊瑚状,沿晶界均匀分布,材料抗冲击耐磨性能优良;在过共晶烧结高铬铸铁中,优先形成的初生碳化物可能成为共晶碳化物的生长基底,形成核-壳结构的M7C3碳化物,沿晶界相互连接呈网状,严重割裂基体。亚共晶、过共晶烧结高铬铸铁的力学性能分别为:硬度HRC63.9、HRC64.3,冲击韧性7.92、3.04 J/cm^2,抗弯强度2112.65、1624.87 MPa。 相似文献
11.
《Materials Science & Technology》2013,29(5):565-573
AbstractThe effect of the volume fraction of eutectic carbides on the thermal fatigue resistance of multicomponent white cast iron has been investigated. Thermal fatigue tests were carried out for 100 and 500 cycles. Nucleation of thermal fatigue cracks took place mostly at the specimen surface, induced by mechanical and metallurgical stress raisers. The crack nucleated in the matrix as well as at the carbide/matrix interface or at the carbide itself. The surface crack density increased slightly for increasing volume fraction of eutectic carbides from 9 to 14%, approximately. Crack propagation took place mostly at the carbide/matrix interface or through the carbide. The propagation rate was affected by the carbide distribution: the higher was the 'carbide continuity/mean free path between carbides' ratio, the higher was the propagation rate. The propagation rate decreased with increasing test time, regardless of the volume fraction of eutectic carbides. 相似文献
12.
D.T. Gawne 《Thin solid films》1984,118(3):385-393
Experimental data indicate that the failure of electrodeposited chromium coatings under sliding operates predominantly by slow fracture and fatigue. Cracks are initiated transverse to the wear direction and propagate progressively through the coating driven by the cyclic stress field beneath the sliding asperities. The final stage of failure takes place by the development of cracks parallel to the surface and their linkage with normal cracks to cause detachment of the coating. 相似文献
13.
《Materials Science & Technology》2013,29(4):343-348
AbstractHypoeutectic low alloy white cast iron powders were produced using a rapid solidification technique. The morphology and microstructural properties of these powders were investigated with respect to cooling rate and particle size. The density of hot pressed compacts as a function of parameters such as hot pressing time and pressure is described. It was found that retained austenite in the form of cells or dendrites was the main constituent of the powders. At 720°C the powder particles can be hot pressed into high density compacts that have a fine cementite–ferrite microstructure. These ultrafine grained compacts exhibited good superplasticity at elevated temperatures. An elongation to failure of 300% was observed.MST/1682 相似文献
14.
《Materials Science & Technology》2013,29(4):336-342
AbstractThe reasons for potentiostatic etching and the way in which it is carried out are explained. The technique was applied to some commercially important materials, and the information obtained is described. It was found that the chromium content of duplex stainless steels had a significant effect on the etching potential, but did not greatly influence the etching time. In high chromium white cast irons (HCWCIs), the composition of the various alloys influenced the etching potential very little, and it was possible to deduce a generally suitable etching range of 950–1050 mV (SCE) for the whole group. Manganous sulphate proved to be a superior etching agent, and very fine detail, e.g. different types of carbide, could be detected in HCWCIs after potentiostatic etching in this solution. Quantitative phase determinations were also possible for all materials investigated, provided that suitable etchants were used. Optimum etching times were from 10 to 15 s, regardless of the group of materials investigated.MST/1665 相似文献
15.
Improving fracture toughness and hardness of Fe2B in high boron white cast iron by chromium addition
The effect of chromium containing 0%, 0.49%, 1.02%, 2.1%, 3.2% (in wt.%) on the morphology, fracture toughness and micro-hardness property of Fe2B in high boron white cast iron was investigated. The results indicated that, with an increase of chromium addition, the morphology of Fe2B becomes larger and changes from the block to rod shape, its micro-hardness increases and the fracture toughness increases first and then decreases. Compared with the fracture toughness (3.8 MPa m1/2) of Fe2B without chromium addition, the toughness at 2.1 wt.% chromium addition can be improved by above one time, achieving 7.8 Mpa m1/2, and the result was also qualitatively testified by the micro-cracks in Fe2B based on scanning electron microscope micrographs. 相似文献
16.
17.
18.
采用高能球磨和真空烧结的方法制备TiC增强高铬铸铁(HCCI)基复合材料。利用SEM,DSC等方法对不同球磨时间的粉末进行分析,研究不同烧结温度对高铬铸铁基复合材料的显微组织、硬度及密度的影响,比较相同工艺下复合材料与高铬铸铁材料的耐磨性。结果表明:球磨12 h后的粉末颗粒大小趋于稳定,粉末活性提高,烧结性能改善,烧结试样中TiC均匀地分布在基体中。随着烧结温度的升高,复合材料内部晶粒逐渐长大,密度和硬度逐渐提高。在1280℃超固相线液相烧结的条件下烧结2 h后,致密度达94.17%,硬度和抗弯强度分别为49.2HRC和980 MPa。在销盘磨损实验中复合材料的耐磨性为单一高铬铸铁材料的1.52倍,磨损机制为磨粒磨损+轻微氧化磨损。 相似文献
19.
With X-ray diffraction the three microscopic differential thermal expansion coefficients of pure cementite were determined with high precision in the temperature range 30–320 °C. These data were used to calculate the average three-axial thermoelastic stresses in white cast iron with differently shaped and oriented cementite inclusions. Between 30 and 300 °C the orientation distribution of the (211) interplanar spacing of the ferrite phase in white cast iron was determined. An evaluation of these data according to the formalism of conventional X-ray stress analysis, however, yields completely wrong results because this formalism is based on the assumption that only biaxial average stresses parallel to the surface exist in the thin surface layer which is penetrated by the X-rays. It is demonstrated that what were observed in reality were the three-axial average phase-specific stresses from the interior of the specimen, which are complicated because of the preferred orientation of the cementite plates. The average phase-specific stress component σ33 perpendicular to the irradiated surface drops to zero only in a sub-micrometre range below the surface. Because of the equilibrium conditions it is exactly zero at the external surface. 相似文献
20.
Transmission electron microscopy has been used to study the microstructure of an experimental white cast iron, in which a combination of modified alloy composition and unconventional heat treatment has resulted in a fracture toughness of 40 MPa m-1/2. Microstructural features of the alloy that contribute to the toughness improvement and hence distinguish it from conventional white irons have been investigated. In the as-cast condition the dendrites are fully austenitic and the eutectic consists of M7C3 carbides and martensite. During heat treatment at 1130 °C the austenite is partially destabilized by precipitation of chromium-rich M7C3 carbides. This results in a dendritic microconstituent consisting of bulk retained austenite and secondary carbides which are sheathed with martensite. The martensite sheaths, which contain interlath films of retained austenite, are irregular in shape with some laths extending into the bulk retained austenite. Emphasis has been placed on the morphology, distribution, and stability of the retained austenite and its transformation products in the dendrites. The implications of these findings on the transformation toughening mechanism in this alloy are discussed. 相似文献