首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dielectric relaxation and scaling behavior of CdS nanoparticles and nanowires were investigated in the frequency range 102–106 Hz and in the temperature range 373–573 K by complex impedance spectroscopy and electric modulus spectroscopy. Studies on the complex permittivity revealed that the dielectric relaxation in CdS nanostructures deviates from Debye like behavior. A detailed study on the grain and grain boundary charge transport was carried out. The charge carrier transport in CdS nanostructures was identified to be hopping of polarons. From the combined analysis of the variation of imaginary part of electric modulus and complex impedance with frequency, it was found that at high temperatures localized conduction is dominant in CdS nanoparticles where as the long range hopping process is dominant with nanowires. It was also found that the scaling behavior of CdS nanoparticles varied considerably from that reported earlier.  相似文献   

2.
Thin films of cuprous oxide (4.6 μm) were electrodeposited on molybdenum. Gold contacts were vacuum evaporated on the films to form devices. These films showed relatively low electrical resistivities at around 106 Ω cm and a charge transport mechanism which is different from the space charge limited current conduction previously reported for the 1011 Ω cm films. The charge transport mechanism in these films was determined by isothermal measurements of the devices current-voltage (I–V) characteristics at some selected temperatures in the range of 78–321 K. In this temperature range the dominant transport mechanism can be explained by the Poole-Frenkel effect through the relation I = VG0exp(−φ0L/kT)exp(BLV1/2)+I0exp(−φ0H/kT)exp(BHV1/2) where the numerical values of the parameters are measured. φ0L = 0.12 eV is the zero-field ionization energy of a shallow acceptor-type level (measured from the edge of the valence band) which has the dominant effect in the range of 78–230 K. Similarly φ0H = 0.70 eV corresponds to a deep level dominant in the high-temperature range 230–321 K. In the high-temperature region a 2.7 μm thick hole accumulation layer forms beneath the oxide-gold interface, assuming the ionized deep level is doubly charged. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
In the present work, we report on the performance of a nanostructured CdS gas sensor. The sensor was fabricated using spin coating technique on glass substrate. The CdS sensor was characterized for their, structural microstructural as well as optoelectronic and H2S response was studied. The XRD analysis showed formation of nanocrystalline CdS. Morphological analysis using SEM revealed nanostructured morphology with average grain size in the range of 40–50nm. Optical investigations showed a high absorption coefficient (104 cm−1) with a direct band gap of 2.54 eV. Electrical transport studies revealed films shows n-type conduction mechanism with room temperature dc electrical conductivity 10−6 (Ω cm)−1. The CdS sensors showed the maximum response of 13.2% upon exposure to 100 ppm H2S at operating temperature 100 °C.  相似文献   

4.
Four donor–π–acceptor type polymeric metal complexes (PCo–F, PCo–B, PNi–F, and PNi–B) with Co(II) or Ni(II) complexes in the branched chain were synthesized by the Heck coupling and utilized as dyes for dye-sensitized solar cells (DSSCs). The structures, photophysical, electrochemicals, and thermal properties of the four dyes were investigated in detail, and the results showed that dye containing Ni(II) complex and alkoxy benzene unit benefited the generation of photocurrent and the open-circuit voltages. The polymeric metal complexes possess good thermal stability and exhibit good solubility in common organic solvents such as chloroform, THF, and toluene. The maximal power conversion efficiency of 1.21% (J sc = 2.49 mA/cm2, V oc = 0.695 V, FF = 0.59) was obtained with a DSSCs based on PNi–B dye under simulated air mass 1.5 G solar irradiation.  相似文献   

5.
Cd1−xZnxTe (where x = 0.02, 0.04, 0.06, 0.08) thin film have been deposited on glass substrate at room temperature by thermal evaporation technique in a vacuum at 2 × 10−5 torr. The structural analysis of the films has been investigated using X-ray diffraction technique. The scanning electron microscopy has been employed to know the morphology behaviour of the thin films. The temperature dependence of DC electrical conductivity has been studied. In low temperature range the thermal activation energy corresponding to the grain boundary—limited conduction are found to be in the range of 38–48 μeV, but in the high temperature range the activation energy varies between 86 and 1.01 meV. The built in voltage, the width of the depletion region and the operating conduction mechanism have been determined from dark current voltage (I–V) and capacitor-voltage (C–V) characteristics of Cd1−xZnxTe thin films.  相似文献   

6.
InP thin films were prepared by spray pyrolysis technique using aqueous solutions of InCl3 and Na2HPO4, which were atomized with compressed air as carrier gas. The InP thin films were obtained on glass substrates. Thin layers of InP have been grown at various substrate temperatures in the range of 450–525°C. The structural properties have been determined by using X-ray diffraction (XRD). The changes observed in the structural phases during the film formation in dependence of growth temperatures are reported and discussed. Optical properties, such as transmission and the band gap have been analyzed. An analysis of the deduced spectral absorption of the deposited films revealed an optical direct band gap energy of 1.34–1.52 eV for InP thin films. The InP films produced at a substrate temperature 500°C showed a low electrical resistivity of 8.12 × 103 Ω cm, a carrier concentration of 11.2 × 1021 cm−3, and a carrier mobility of 51.55 cm2/Vs at room temperature.  相似文献   

7.
The sessile drop technique has been used to measure the temperature dependence of the contact angle, θ, of the liquid metals Ag and Cu in contact with polycrystalline yttrium oxide (yttria, Y2O3) at the temperature range 1,333–1,773 K in Ar/4%H2 atmosphere. Combination of the experimental results with literature data taken for nonwetted and nonreactive oxide/liquid metal systems permit the calculation of the surface energy of Y2O3 as γsv (J/m2) = 2.278–0.391 × 10−3 T. For the same atmospheric conditions, thermal etching experiments on the grain boundaries intersecting the surface of the polycrystalline ceramic allow to determine the groove angles, ψ, with respect to temperature and time as well as the grain-boundary energy of Y2O3 as γss (J/m2) = 1.785–0.306 × 10−3 T. Grain-boundary grooving studies on polished surfaces of Y2O3 annealed in Ar/4%H2 atmosphere between 1,553 K and 1,873 K have shown that surface diffusion is the dominant mechanism for the mass transport. The surface diffusion coefficient can be expressed according to the equation D s (m2/s) = 1.22 × 10−3 exp(−343554/RT).  相似文献   

8.
Layered nanostructures (LNs) of the commercial ferroelectric Pb(Zr0.53Ti0.47)O3 (PZT) and the natural ferroic relaxor Pb(Fe0.66W0.33)O3 (PFW) were fabricated with a periodicity of PZT/PFW/PZT (~5/1/5 nm, thickness ~250 nm) on MgO substrates by pulsed laser deposition. The dielectric behavior of these LNs were investigated over a wide range of temperatures and frequencies, observing Debye-type relaxation with marked deviation at elevated temperatures (>400 K). High dielectric constant and very low dielectric loss were observed below 100 kHz and 400 K, whereas the dielectric constant decreases and loss increases with increase in frequency, similar to relaxor ferroelectrics. Asymmetric ferroelectric hysteresis loops across UP and DOWN electric field were observed with high remanent polarization (Pr) of about 33 μC/cm2. High imprint (~5–7 V across 250 nm thin films) were seen in ferroelectric hysteresis that may be due to charge accumulation at the interface of layers or significant amount of strain (~3.21) across the layers. Room temperature ferromagnetic hysteresis was observed with remanent magnetization 5.32 emu/cc and a coercive field of ~550 Oe. Temperature and field dependent leakage current densities showed very low leakage ~10−7–10−5 A/cm2 over 500 kV/cm. We observed imprint in hysteresis that may be due to charge accumulation at the interface of layers or active role of polar nano regions (PNRs) situated in the PFW regions.  相似文献   

9.
The electrical transport behaviour of ferrocene mixed poly (methyl methacrylate) (PMMA) films (≈ 20 μm in thickness) deposited by the isothermal immersion technique has been studied in the temperature range of 333–373 K and field from (2·0–4·0)×104 V/cm. It has been found that at higher fields and temperatures, the observed conduction behaviour could be consistently described by the Richardson-Schottky emission. The increase in current due to doping has been attributed to the formation of charge transfer complexes. The dopant molecules act as an additional trapping centre and provide a link between polymer molecules in amorphous region leading to the formation of charge transfer complex.  相似文献   

10.
A series of n-ZnO/p-Si thin film heterojunctions have been fabricated by a low cost sol–gel technique for different ZnO film thicknesses and the dark as well as photo current–voltage (I–V) characteristics have been investigated in details. The heterojunction with ZnO thickness of 0.46 μm shows the best diode characteristics in terms of rectification ratio, I F/I R = 5.7 × 103 at 5 V and reverse leakage current density, J R = 7.6 × 10−5 A cm−2 at −5 V. From the photo I–V curves and wavelength dependent photocurrent of the heterojunctions, it is found that the junction with 0.46 μm ZnO thickness shows the highest sensitivity towards both UV and visible lights.  相似文献   

11.
CuCl is a wide-direct band gap semiconductor, lattice matched to Si and it possesses excellent ultra violet (UV) emission properties. It is thus a promising candidate for the next generation Si based UV optoelectronics. CuCl films were deposited using RF magnetron sputtering technique. X-ray diffraction analysis reveals that the grains are strongly <111> oriented. Triangular crystallites of CuCl were observed in the AFM surface topograph. Au–CuCl–Si–Au structures were fabricated and field dependent electrical studies were carried out in the electric field range of 1.25 × 106 to 2.5 × 107 V/m. I–V characteristics show that ohmic conduction prevails in low electric fields up to 2.5 × 106 V/m. In the higher field range, from 2.5 × 106 to 2.5 × 107 V/m, the conduction mechanism was Schottky emission controlled. There was no trap related charge transport observed at higher electric fields. Preliminary electrical studies are reported in this article.  相似文献   

12.
Polycrystalline LiNbO3 films with random orientation of grains on (001)Si substrates have been grown by RF magnetron sputtering method. Electrical conductance of the formed (001)Si–LiNbO3 heterostructures is defined through hopping mechanism by charge localization centers (CLC) in the band gap of LiNbO3 with concentration N t  = 2.3 × 1024 m−3. Analysis of the impedance frequency spectrum has disclosed two relaxation processes of Maxwell–Wagner type with relaxation times τ1 = 0.1 s and τ2 = 1 × 10−4 s. Thermal annealing at T = 650 °C leads to an increase in the average grain size from 50 to 95 nm; it also leads to a decrease in the CLC concentration down to N t  = 2.8 × 1020 m−3. Electrical conductance of (001)Si–LiNbO3 heterostructures after thermal annealing is determined by space charge limited conduction mechanism. There have been defined parameters of dielectric hysteresis loops. It has been demonstrated that thermal annealing leads to a decrease in values of remanent polarization and coercive field.  相似文献   

13.
This paper investigates the electrical characteristics at low temperatures through C–V, I–V and conductance measurements to understand the interface behavior of HfO2 and p-type GaAs bulk substrate. Room temperature interface state density, D it , estimated for as-deposited Ti–Au/HfO2/GaAs capacitors was found to be 3.68 × 1011 cm−2 eV−1. Low temperature measurement suggests that only fast interface states contribute to the conduction process. When the characteristics of two different metal gates were compared, the accumulation capacitance density observed to be 1.4 and 8.98 fF/μm2 for Be–Au/HfO2/GaAs and Ti–Au/HfO2/GaAs, respectively at 1 MHz.  相似文献   

14.
Dissolution kinetics of cobalt in liquid 87.5%Sn–7.5%Bi–3%In–1%Zn–1%Sb and 80%Sn–15%Bi–3%In–1%Zn–1%Sb soldering alloys and phase formation at the cobalt–solder interface have been investigated in the temperature range of 250–450 °C. The temperature dependence of the cobalt solubility in soldering alloys was found to obey a relation of the Arrhenius type c s = 4.06 × 102 exp (−46300/RT) mass% for the former alloy and c s = 5.46 × 102 exp (−49200/RT) mass% for the latter, where R is in J mol−1 K−1 and T in K. For tin, the appropriate equation is c s = 4.08 × 102 exp (−45200/RT) mass%. The dissolution rate constants are rather close for these soldering alloys and vary in the range (1–9) × 10−5 m s−1 at disc rotational speeds of 6.45–82.4 rad s−1. For both alloys, the CoSn3 intermetallic layer is formed at the interface of cobalt and the saturated or undersaturated solder melt at 250 °C and dipping times up to 1800 s, whereas the CoSn2 intermetallic layer occurs at higher temperatures of 300–450 °C. Formation of an additional intermetallic layer (around 1.5 μm thick) of the CoSn compound was only observed at 450 °C and a dipping time of 1800 s. A simple mathematical equation is proposed to evaluate the intermetallic-layer thickness in the case of undersaturated melts. The tensile strength of the cobalt-to-solder joints is 95–107 MPa, with the relative elongation being 2.0–2.6%.  相似文献   

15.
CdS nanoparticles doped with Tb3 + were synthesized by sol–gel technique. The influence of CdS on the Tb3 +  glass was studied by UV-Visible and luminescence spectroscopy. The luminescence intensity of the glasses increased significantly in the presence of CdS nanoparticles. Terbium ions excited into the 5 D 3 level have a rich emission spectrum in the 400–700 nm range decaying to different 7 F J levels. The intensity of violet and blue luminescence from 5 D 3 level is highly dependent on Tb3 +  concentration, on presence of CdS co-dopant and annealing conditions.  相似文献   

16.
Investigation of the oxygen-deficient 112-type ordered oxides of the type LnBaCoMnO5+δ (Ln = Nd, Eu) evidences certain unusual magnetic behavior at low temperatures, compared to the LnBaCo2O5+δ cobaltites. The ordered NdBaCoMnO5.9 depicts a clear paramagnetic to antiferromagnetic type transition around 220 K, whereas for EuBaCoMnO5.7 one observes an unusual magnetic behavior below 177 K which consists of ferromagnetic regions embedded in an antiferromagnetic matrix. The existence of two sorts of crystallographic sites for Co/Mn and their mixed valence states favor the ferromagnetic interaction, whereas antiferromagnetism originates from the Co3+–O–Co3+ and Mn4+–O–Mn4+ interactions. Unlike the parent compounds, the present Mn-substituted phases do not exhibit prominent magnetoresistance effects in the temperature range 75–400 K.  相似文献   

17.
Dependences of the open-circuit voltage, short-circuit current, fill factor, and efficiency of a CdS/CdTe solar cell on the resistivity and thickness of the p-CdTe absorber layer, the noncompensated acceptor concentration Na-Nd, and carrier lifetime τ in CdTe, are investigated, and optimization of these parameters in order to improve the solar cell efficiency is performed. It has been shown that the observed low efficiency of CdS/CdTe solar cells is caused by the too short electron lifetime in the range of 10− 10-10− 9 s and too thin (3-5 µm) CdTe layer currently used for fabrication of CdTe/CdS solar cells. To achieve an efficiency of 28-30%, the resistivity and thickness of the CdTe absorber layer, the noncompensated acceptor concentration, and carrier lifetime should be ∼ 0.1 Ω·cm, ≥ 20-30 µm, ≥ 1016 cm− 3, and ≥ 10− 6 s, respectively.  相似文献   

18.
The commonly used CdS/i-ZnO buffer system in Cu(In,Ga)Se2 (CIGS) thin-film solar cells was substituted by ZnS/(Zn,Mg)O. ZnS has a higher transmission in the short wavelength range due to the higher bandgap energy Eg = 3.7 eV compared to CdS with Eg = 2.4 eV. Unfortunately, in our experiments the resulting gain in short-circuit current density jSC as the result of reduced absorption losses in the blue wavelength region is mostly accompanied by a decrease in open-circuit voltage VOC of the devices with ZnS buffer. This contribution discusses possible explanations for the systematically lower open-circuit voltages of the devices with a ZnS buffer layer.The carrier collection properties of the devices with a ZnS buffer were investigated by electron beam induced current measurements in the junction configuration. The maximum of the collection probability for ZnS cells is located in the CIGS bulk and not near the buffer/CIGS interface like for solar cells with CdS buffer. Additionally, we observed a larger space charge width compared to devices with a CdS buffer. This finding concurs with the considerably lower capacitance values and also lower charge densities in ZnS-buffered devices, as determined by capacitance voltage measurements.Based on these findings, the main reason for the lower open-circuit voltages of our ZnS devices is that the charge densities are lower than for the CdS/i-ZnO cells.  相似文献   

19.
A review of the technique of direct growing high-quality InxGa1−xAs or InP buffer layers on GaAs substrates by metal-organic chemical vapor deposition (MOCVD) is given. This low-temperature growth method benefits the improvement of metamorphic device performance. In this work, a simple and novel method of directly deposited thin InxGa1−xAs or InP buffer layers (< 1 μm) on GaAs substrates is presented, instead of strained-layer superlattice, two-step, graded or CS (compliant substrates) methods, while maintaining low dislocations, high crystal quality, and uniform and mirror like surfaces. For the direct growth technique of InxGa1−xAs on GaAs, we found an excellent quality In0.54Ga0.46As buffer of rms surface roughness of only 0.686 nm by AFM and FWHM of 925 arcsec by XRD can be obtained at a low growth temperature of 440C with a constant Ga/Ingas partial pressure of 5. The superior results are mainly due to the use of low temperature growth technology. In addition, we also found this growth technology is available to directly grow InP buffer layers on GaAs. Experimental results conclude that the growth temperature of 480C in harmony with the V/III ratios range of 130–210 is a suitable window to directly grow InP on GaAs substrates.  相似文献   

20.
New lead-free ceramics (Bi0.5Na0.5)1−x−yBax(Yb0.5Na0.5)yTiO3 (x = 0.02–0.10 and y = 0–0.04) have been prepared by an ordinary sintering technique and their structure and piezoelectric properties have been studied. X-ray diffraction shows that Ba2+ and Yb3+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure and a morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases is formed at 0.04 < x < 0.10. The partial substitutions of Ba2+ and Yb3+ for A-site ions of Bi0.5Na0.5TiO3 decrease effectively the coercive field E c and improve significantly the remanent polarization P r. The ceramics with x = 0.06 and y = 0–0.02 situate within the MPB and possess the lower E c and larger P r, and thus exhibit optimum piezoelectric properties: d 33 = 155–171 pC/N and k p = 29.2–36.7%. The temperature dependences of the dielectric and ferroelectric properties suggest that the ceramics may contain both the polar and non-polar regions at temperatures near/above T d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号