首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The morphology and rheology of polyethylene-octene elastomer (POE)/crosslinked starch (CS) immiscible blends with various amounts of compatibilizer were experimentally examined. A graft copolymer, POE-g-MAH, acting as the compatibilizer, was used to modify the interface of the blend. The particle radius in the POE/CS 80/20 system decreased with increasing compatibilizer up to 5 wt%, beyond which the particle size slightly increased. This indicates that the interface reaches saturation when the compatibilizer content is 5 wt%, leading to reduced effectiveness of the compatibilizer. From the SEM micrographs, the compatibilized blends were found to have better interfacial adhesion between the POE and starch phase than the uncompatibilized blends. Rheological examination shows a sharp reduction of the viscoelastic modulus and complex viscosity in blends containing 10 wt% compatibilizer. When the content of compatibilizer is less than 5 wt%, the viscoelastic modulus and complex viscosity of the blends increase with increasing the content of compatibilizer.  相似文献   

2.
POE接枝衣康酸增容PA6/POE共混物性能及形态研究   总被引:1,自引:0,他引:1  
以衣康酸(ITA)为接枝单体,采用双螺杆挤出机和熔融接枝技术制备了一系列乙烯-辛烯共聚物接枝物(POE-g-ITA),通过红外光谱对接枝物的结构进行了表征,研究了引发剂和单体用量对POE-g-ITA接枝率和熔体流动速率的影响,当POE/ITA/过氧化二异丙苯(DCP)=94/6/0.36时,接枝率达到1.36 %;通过双螺杆挤出机将相容剂POE-g-ITA引入到聚酰胺6/乙烯-辛烯共聚物(PA6/POE)共混物中,研究了共混物的力学性能和形态结构。结果表明,加入5份(质量份数,下同)POE-g-ITA后,PA 6/POE共混物的冲击强度提高到纯PA 6的12.78倍,PA6与POE两相界面变得模糊,分散相尺寸明显减小,界面相互作用明显增强,相容性得到显著提高。  相似文献   

3.
Blends of a poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO)/polyamide 6 (PA 6) alloy toughened with a novel polyolefin elastomer poly(ethylene‐1‐octene) (POE) were prepared via melt extrusion. In order to improve the compatibilization between POE and the PPO/PA 6 alloy, POE was grafted with maleic anhydride (MA), which could react with the amine group of PA 6. The Izod impact strength of the blends exhibited an optimum when the extent of MA grafting of POE was changed, which is an order of magnitude higher than that of the untoughened blends. The morphology revealed that the size of the POE particles decreased with an increasing MA grafting ratio of POE. Studies on the tensile properties and rheology of the blends were also carried out. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3110–3116, 2003  相似文献   

4.
In this paper, polyethylene-octene elastomer (POE) and starch blends were studied. The compatibility beyween POE and starch was improved by adding polyethylene-octene/maleic anhydride graft copolymer (POE-MA) as compatibilizer. The compatibilization reaction was followed by FTIR spectra. The morphology of the blends was investigated using scanning electron microscopy (SEM). It was found that the size of the starch phase increased with an increasing content of starch for the blends. The addition of POE-MA can lower the size of the starch phase in the POE matrix, and this was due to the formation of an ester carbonyl function group by the chemical reaction between the anhydride groups and hydroxyl groups on starch. This was reflected in the mechanical properties of the blends, the addition of POE-MA compatibilizer can improve the mechanical properties of POE/starch blends. The thermogravimetric analysis of POE/starch blends was also conducted.  相似文献   

5.
Mechanical properties and morphologies of nylon 11/ethylene‐octene copolymer blends have been investigated. The ethylene‐octene copolymer (POE) employed in this study was grafted with maleic anhydride (MAH) and thus has the potential to react with the amine group of nylon 11. Nylon 11/POE‐g‐MAH and nylon 11/POE/POE‐g‐MAH blends with varying MAH graft ratios were prepared. In this paper, the effect of MAH graft ratio on ductile‐brittle transition temperature (DBTT), mechanical properties, and morphology of blends was studied. The results showed that incorporation of POE‐g‐MAH could remarkably improve the compatibility between the nylon and POE elastomers, thus increasing the toughness of the resultant blends. The compatibilizing effect on impact strength became more pronounced with increasing MAH graft ration. DBTTs of blends were initially lowered dramatically with the increasing maleic anhydride graft ratio, but over 0.56% MAH content, DBTTs of blends did not drop further, while tensile strength and tensile modulus dropped slightly because of the decreased glass transition temperature (Tg) of nylon 11/POE blends, resulting from the increased compatibility between the two phases. The role of MAH graft ratio on the POE particle size and dispersion of POE on nylon 11 matrix was also studied.  相似文献   

6.
Blends of poly(ethylene terephthalate) (PET) and poly(ethylene octene) (POE) were prepared by melt blending with various amounts of trimethylolpropane triacylate (TMPTA). The mechanical properties, phase morphologies, and gel fractions at various absorbed doses of γ‐irradiation have been investigated. It was found that the toughness of blends was enhanced effectively after irradiation as well as the tensile properties. The elongation at break for all studied PET/POE blends (POE being up to 15 wt %) with 2 wt % TMPTA reached 250–400% at most absorbed doses of γ‐irradiation, approximately 50–80 times of those of untreated PET/POE blends. The impact strength of PET/POE (85/15 wt/wt) blends with 2 wt % TMPTA irradiated with as little as 30 kGy absorbed dose exceeded 17 kJ/m2, being approximately 3.4 times of those of untreated blends. The improvement of the mechanical properties was supported by the morphology changes. Scanning electron microscope images of fracture surfaces showed a smaller dispersed phase and more indistinct inter‐phase boundaries in the irradiated blends. This indicates increased compatibility of PET and POE in the PET/POE blends. The changes of the morphologies and the enhancement of the mechanical properties were ascribed to the enhanced inter‐phase boundaries by the formation of complex graft structures confirmed by the results of the gelation extraction and Fourier Transform Infrared analyses. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
黎珂  黄汉雄 《化工学报》2013,64(6):2285-2290
引言对聚合物进行共混是改善其性能的重要方法,多元聚合物共混物结合了多种聚合物的优点,具有更多独特的性能,因此对多元尤其是三元共混物的研究越来越多[1-5]。聚合物共混物的相形态对其性能有着决定性的影响[6-9],因而相形态是共混物研究的一个非常重要的方面[9-12]。  相似文献   

8.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
POE接枝GMA的制备及其增韧PA6的应用研究   总被引:1,自引:0,他引:1  
熔融法制备聚烯烃热塑性弹性体(POE)接枝甲基丙烯酸缩水甘油酯(GMA),对其产物进行红外表征,证实了GMA已成功接枝到POE大分子链上。将接枝物用于聚酰胺-6(PA6)增韧改性,通过力学性能测试和SEM研究了弹性体含量及种类对共混物冲击强度和断面形态的影响。结果表明,POE与其接枝物共混作为弹性体增韧效果更好,当PA6、POE和POE-g-(GMA-co-St)质量比为80:6:14时,弹性体分散均匀且粒径细化为0.5~2μm,共混物缺口冲击强度提升至纯PA6的3倍。  相似文献   

10.
郭威男  赵彩霞  陈春银  马建莉  林杉  王标兵 《塑料》2012,41(1):58-60,54
采用旋转流变仪研究了尼龙6/POE/EVOH共混物的流变行为.流变曲线结果分析表明:尼龙6/POE/EVOH共混物为假塑性流体,呈现出切力变稀的现象;EVOH的加入增大了尼龙6/POE/EVOH共混物的储能模量、损耗模量和复数黏度;用Han方法看出共混物没有发生相分离.时间扫描发现,时间对共混物的性能有一定的影响.  相似文献   

11.
A series of grafted ethylene-octene copolymers using itaconic acid (ITA) and styrene (St) as grafted monomers (POE-g-ITA, POE-g-(ITA-St)) were prepared via melt grafting technique by twin screw extrusion. The structure of grafted copolymer was characterized by FT-IR. The monomer and initiator concentration and the percent content of St in grafted monomers were also explored in the effect on the graft ratio (GR) and melt flow rate (MFR) of POE-g-ITA. The GR of POE-g-ITA reached 1.36% when when the ratio of POE:ITA:DCP is 94:6:0.36, and the GR of POE-g-(ITA-St) reached 1.44% when the ratio of POE:ITA:St:DCP = 94:3:3:0.18. The compatibilizer POE-g-ITA was introduced into PA6/POE blend by twin screw extrusion. The mechanical properties and morphological structure were investigated. The results revealed that the impact strength of the PA6/POE blend containing 5 phr of POE-g-ITA was enhanced 12.78 times compared with pure PA6. The crystallinity (X c) of PA6 phase increased gradually when the compatibilizer POE-g-ITA was introduced into PA6/POE blends, although the melting point (T m) of PA6 phase had no obvious change. The interface between PA6 and POE phase became indistinct and the compatibility was significantly increased.  相似文献   

12.
Different blends of a linear polypropylene (L-PP), a long-chain branched polypropylene (LCB-PP), and a polyolefin elastomer (POE) are prepared and foamed using core-back injection molding. The objective is to analyze the use of POE and LCB-PP as complementary strategies to improve cellular polymers’ impact response. Different parameters are then studied in blends and injection molded plaques to understand the samples’ mechanical behavior. Parameters such as the interfacial tension, elastomer morphology, extensional rheology, cellular structure, and crystallization behavior are characterized in detail. The addition of POE allows improving the impact response of both the solids and cellular polymers, but the stiffness is reduced. On the other hand, the substitution of L-PP by LCB-PP, in blends containing POE, results in solids and cellular materials with both better stiffness and better impact properties, due to the different crystalline morphology comprising the samples, a different cellular orientation, and thicker solid skin.  相似文献   

13.
To prepare thermoplastic polyurethane (TPU)/ethylene‐octylene copolymer (POE) blends, which are thermodynamically immiscible, maleated POE and aminated POE were incorporated as compatibilizers. Effect of addition of the compatibilizers and their contents on morphology, coalescence, and mechanical properties of TPU/POE blends were investigated. The microstructural observation revealed that the compatibilizers are located at the interface in the blends, forming a stable interfacial layer. As a result, the dispersed phase particle size was greatly reduced and tensile properties of the blends were significantly improved. POE‐NH2 provides the blends with higher compatibility than POE‐MA. The interfacial interaction offered by the compatibilizers was found to be a function of the amount of the reactive groups grafted onto POE. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
In this article, the phase morphology and mechanical properties of polypropylene (PP)/ethylene–octane copolymer (POE) blends with fixed ratio (60/40) obtained via different processing conditions, including barrel temperature, injection speed, and mold temperature, have been investigated. SEM was carried out for detailed characterization of phase morphology from the skin to the core, layer by layer. It was interesting that for all the processing conditions no dispersed POE elastomer was observed in the skin layer but elongated POE particles with large size were observed in the subskin layer. From the transition zone to the core layer, an increased phase separation was observed, which could lead to a formation of cocontinuous morphology, depending on the processing condition used. Higher barrel temperature, lower mold temperature, and higher injection speed could result in a smaller size of POE phase. The tensile strength and impact strength were found not sensitive to barrel temperature and mold temperature but to the low injection speed, both tensile strength and impact strength had a higher value for specimen obtained via low injection speed. The formation of the skin‐core morphology and the effect of processing conditions on the phase morphology were discussed based on crystallization kinetics of PP matrix, rheology, and shear induced phase mixing. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
Two grafted ethylene–octene copolymers [POEs; i.e., POE‐g‐maleic anhydried (MAH) and aminated POE (denoted by POE‐g‐NH2) were used as compatibilizers in immiscible blends of thermoplastic polyurethane (TPU) and POE. The effects of the compatibilizers on the dynamic rheological properties and morphologies of the TPU/POE blends were investigated. The characteristic rheological behaviors of the blends indicated that the strong interactions between the two phases were due to the compatibilization. Microstructural observation confirmed that the compatibilizers were located at the interface in the blends and formed a stable interfacial layer and smaller dispersed phase particle size. Compared with POE‐g‐MAH, POE‐g‐NH2 exhibited a better compatibilization effect in the TPU/POE blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
In this article, the phase morphology and rheological properties of polypropylene (PP)/poly(ethylene‐co‐octene) (POE) blends with a droplet‐matrix microstructure were studied by scanning electron microscopy and rheological experiments. The data were analyzed to yield the variations of rheological behavior with blend composition and insight into the microstructure of PP/POE blends. The Palierne's emulsion type model was used to extract information on rheological properties, and the interfacial tensions between the PP and POE were determined by fitting the experimental data with this model. The results indicated that the interfacial tensions were shown to depend on blend composition and temperature. Rheological properties of PP/POE blends were investigated in a systemic way with varying shear histories. The results showed that shear history had an important effect on the rheological properties of the blends due to the dispersed phase (POE) domains refined with increasing preshear rate and preshear time. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

17.
The effect of a compatibilizer on the properties of corn starch‐reinforced metallocene polyethylene–octene elastomer (POE) blends was studied. The compatibility between POE and starch was improved markedly with an acrylic acid‐grafted POE (POE‐g‐AA) copolymer as a compatibilizer. Fourier transform infrared spectroscopy, X‐ray diffraction spectroscopy, differential scanning calorimetry, and scanning electron microscopy were used to examine the blends produced. The size of the starch phase increased with an increasing content of starch for noncompatibilized and compatibilized blends. The POE/starch blends compatibilized with the POE‐g‐AA copolymer lowered the size of the starch phase and had a fine dispersion and homogeneity of starch in the POE matrix. This better dispersion was due to the formation of branched and crosslinked macromolecules because the POE‐g‐AA copolymer had anhydride groups to react with the hydroxyls. This was reflected in the mechanical properties of the blends, especially the tensile strength at break. In a comparison with pure POE, the decrease in the tensile strength was slight for compatibilized blends containing up to 40 wt % starch. The POE‐g‐AA copolymer was an effective compatibilizer because only a small amount was required to improve the mechanical properties of POE/starch blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1792–1798, 2002  相似文献   

18.
Ternary blends of polyoxymethylene (POM), polyolefin elastomer (POE), and glycidyl methacrylate grafted high density polyethylene (GMA‐g‐HDPE) with various component ratios were studied for their mechanical and thermal properties. The size of POE dispersed phase increased with increasing the elastomer content due to the observed agglomeration. The notched impact strength demonstrated a parabolic tendency with increasing the elastomer content and reached the peak value of 10.81 kJ/m2 when the elastomer addition was 7.5 wt%. The disappearance of epoxy functional groups in the POM/POE/GMA‐g‐HDPE blends indicated that GMA‐g‐HDPE reacted with the terminal hydroxyl groups of POM and formed a new graft copolymer. Higher thermal stability was observed in the modified POM. Both storage modulus and loss modulus decreased from dynamic mechanical analysis tests while the loss factor increased with increasing the elastomer content. GMA‐g‐HDPE showed good compatibility between the POM matrix and the POE dispersed phase due to the reactive compatibilization of the epoxy groups of GMA and the terminal hydroxyl groups of POM. A POM/POE blend without compatibilizer was researched for comparison, it was found that the properties of P‐7.5(POM/POE 92.5 wt%/7.5 wt%) were worse than those of the blend with the GMA‐g‐HDPE compatibilizer. POLYM. ENG. SCI., 57:1119–1126, 2017. © 2017 Society of Plastics Engineers  相似文献   

19.
The objective of this research is to study the effect of using maleic anhydride‐grafted polyethylene‐octene elastomer (POE‐g‐MA) as a compatibilizer on nylon 6/acrylonitile‐butadiene‐styrene (ABS) copolymer blends. With POE‐g‐MA, nylon 6/ABS at a blending ratio of 80/20 showed an optimal result in modified impact property. Scanning electron microscopy (SEM) revealed that the particle sizes of ABS in the dispersed phase diminished as the amount of the added compatibilizer (POE‐g‐MA) increased. The compatibilizer reduced the surface tension between nylon 6 and ABS, thus increasing the compatibility of the two phases. Furthermore, studies of the rheological behavior of the system showed that the shear viscosity of nylon 6/ABS blends also increased with the introduction of POE‐g‐MA. Finally, dynamic mechanical analysis (DMA) experiments showed that adding POE‐g‐MA dramatically improved the impact strength of the blends at room temperature and low temperatures. Polym. Eng. Sci. 44:2340–2345, 2004. © 2004 Society of Plastics Engineers.  相似文献   

20.
Poly(ethylene-1-octene) (POE) was functionalized to varying degrees with glycidyl methacrylate (GMA) by melt grafting processes. Fourier transform infrared spectra (FT-IR) and 1H NMR spectra confirmed that glycidyl methacrylate was successfully grafted onto the POE. The data from GPC measure demonstrated that POE chains degraded during grafting process. The POE-g-GMA elastomers were used to toughen nylon. The mechanical properties, fracture surface morphology and the dispersal phase size were investigated. Results showed that the grafting degree strongly influenced the morphology, mechanical properties and the dispersal phase size of PA6/POE-g-GMA blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号