首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Superconducting YBa2Cu3Ox thin films were deposited on NdGaO3 (110) substrates using two different techniques: dc sputtering at high oxygen pressure and pulsed laser deposition. The structure, electrical properties, and surface morphology of the obtained films were compared. The superior crystal quality of dc-sputtered films fabricated at the same temperature and at oxygen pressure of the same range as for laser-deposited films can be explained by a lower deposition rate providing time for recrystallization processes. The re-evaporation becomes significant for dc sputtering at high deposition temperatures and results in Badeficient films. The high mobility of atoms on the surface of the growing film during laser deposition helps in the formation of smoothc-oriented areas of the film.  相似文献   

2.
由于电镀硬铬对环境有一定的污染,因而选择合适的制备方式和合适的替代硬铬的材料具有一定的实际意义。本文选用Co-Ni作为硬铬的替代材料,并采用中频磁控溅射的方式在铜基底上制备Co-Ni合金薄膜,重点研究了溅射功率与Co-Ni合金薄膜的沉积速率、成分的关系,结果表明沉积速率随溅射功率的增加而增加;溅射功率在0.8~1.1 kW之间时,薄膜成分与靶材成分基本一致;并把1.1 kW时制备的Co-Ni合金薄膜的电极化腐蚀性能与电镀Cr薄膜、离子镀Cr薄膜相比较,结果表明Co-Ni合金的腐蚀电位可达到-0.245 V,具有较强的耐腐蚀性。  相似文献   

3.
Pure nickel thin films were deposited on Si (100) substrates under different conditions of sputtering using direct current magnetron sputtering from a nickel metal target. The different deposition parameters employed for this study are target power, argon gas pressure, substrate temperature and substrate-bias voltage. The films exhibited high density of void boundaries with reduction in <111> texture deposited under high argon gas pressures. At argon gas pressure of 5 mTorr and target power of 300 W, Ni deposition rate was ~40 nm/min. In addition, coalescence of grains accompanied with increase in the film texture was observed at high DC power. Ni films undergo morphological transition from continuous, dense void boundaries to microstructure free from voids as the substrate-bias voltage was increased from −10 to −90 V. Furthermore, as the substrate temperature was increased, the films revealed strong <111> fiber texture accompanied with near-equiaxed grain structure. Ni films deposited at 770 K showed the layer-by-layer film formation which lead to dense, continuous microstructure with increase in the grain size.  相似文献   

4.
磁控溅射法制备电磁屏蔽织物的研究   总被引:5,自引:0,他引:5  
本文采用直流磁控溅射在无纺布基底上溅射沉积金属铜来制备电磁屏蔽织物。通过原子力显微镜观察发现,工艺参数对溅射沉积速率以及膜层的表面形貌都有较大的影响。在一定范围内,溅射功率越大,沉积速率越大,膜层颗粒分布越均匀致密。溅射压力一般选取0.9 Pa左右为宜,在此压力下,溅射沉积速率最大。经测试膜层与基底结合牢度较好,溅射沉积铜后透气性变化较小。频谱分析仪测试结果表明织物的屏蔽性能十分优良。  相似文献   

5.
High rate deposition of ITO thin films at a low substrate temperature was attempted by using a facing target sputtering (FTS) system. Deposition rate as high as 53 nm/min was realized on polycarbonate film substrate of 80-μm thickness. When the film was deposited at a deposition rate above 80 nm/min, polycarbonate film substrate was thermally damaged. The film deposited by FTS has much smaller compressive film stress than the film deposited by conventional magnetron sputtering. The film stress was reduced significantly by increasing the sputtering gas pressure and stress-free films can be obtained by adjusting the sputtering gas pressure. This may be mainly caused by the fact that bombardment by high energy negative oxygen ions to substrate surface during deposition can be completely suppressed in the FTS. Film structure and electrical properties changed little with substrate position, and uniform films were obtained by the FTS.  相似文献   

6.
在室温条件下采用射频磁控溅射法在涤纶平纹机织物表面沉积纳米Cu薄膜,借助原子力显微镜(AFM)观察镀膜前后样品表面变化。通过分别改变镀膜时间、溅射功率和气体压强,研究其对样品透光性和导电性的影响。实验结果表明,经Cu镀层处理的涤纶平纹织物对紫外光和可见光的吸收能力明显优于原样。溅射压强增加,透光性能增强,铜膜方块电阻增加,导电性能减弱;镀膜时间延长和溅射功率增加,样品透射率降低,屏蔽紫外线和可见光效果明显,在溅射时间接近15min和溅射功率增加到120W后,样品屏蔽效果不明显,铜膜方块电阻随溅射功率增加而减小,导电性能增强。  相似文献   

7.
ZnO 薄膜包装材料溅射制备工艺与阻隔性能研究   总被引:1,自引:1,他引:0  
目的为了解决普通聚合物包装塑料对水、氧的阻隔能力不足,以及包装内容物货架时间短等问题,研究氧化锌(ZnO)沉积复合薄膜制备工艺与阻隔性能之间的关系,探索其应用于包装材料的可行性。方法采用射频磁控溅射技术(RF),以ZnO为靶材,在PET塑料表面沉积制备氧化锌薄膜包装材料,并详细分析射频溅射功率、沉积时间与工作气压对ZnO复合薄膜微观形貌、沉积速率以及阻隔性能的影响。结果当溅射功率为150 W,沉积时间为30 min,工作气压为0.8 Pa时,ZnO薄膜均匀且致密,阻隔能力最强,其氧气透过率(OTR)降低为1.23 m L/(m2·d),水蒸汽透过率(WVTR)降低为0.382 g/(m2·d)。与相同厚度下的PET原膜相比,所制备的ZnO高阻隔薄膜的透氧率降低了49.5倍,透湿率降低了17.6倍。结论射频溅射参数通过影响复合薄膜的微观形貌、致密程度、沉积速率以及沉积层厚度等方面对其阻隔能力会产生较大影响。  相似文献   

8.
Abstract

Chromium (Cr) films were deposited on plain carbon steel sheets by dc and rf magnetron sputtering as well as by electroplating. Effects of dc or rf sputtering power on the deposition rate and properties such as, hardness, adhesion strength, surface roughness and corrosion resistance of the Cr films were investigated. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microcopy (SEM) analyses were performed to investigate the crystal structure, surface roughness, thickness of the Cr films. Salt fog tests were used to evaluate the corrosion resistance of the samples. The deposition rate, hardness and surface roughness of the Cr film deposited by either dc or rf sputtering increase with the increase in sputtering power but the adhesion strength is nearly independent of the sputtering power. The deposition rate, hardness and adhesion strength of the Cr film deposited by dc sputtering are higher than those of the Cr film deposited by rf sputtering, but rf sputtering offers smoother surface and higher corrosion resistance. The sputter deposited Cr film is harder and has a smoother surface than the electroplated one. The sputter deposited Cr film also has higher corrosion resistance than the electroplated one, which may be attributed to the smoother surface of the sputter deposited film.  相似文献   

9.
利用中频脉冲直流磁控溅射法制备了平面ZnO:Al(AZO)透明导电薄膜,研究了沉积压力、衬底温度和溅射功率对AZO薄膜光电性能、薄膜稳定性的影响.结果表明:在较低沉积压力、衬底温度及溅射功率下,可获得具有低电阻率、高透过率、高稳定性的AZO薄膜.  相似文献   

10.
The mass flow of the reactive gas during sputtering of AIN has been studied in order to control film stoichiometry as well as film structure and morphology. It has been observed that the film composition and sputtering rate depend strongly on the deposition conditions and, in particular, on the mass flow and the sputtering pressure. It has been possible to deposit transparent, almost stoichiometric as well as non-transparent, metal-rich AIN films. The metal-rich films had a sputtering rate which was a factor of six higher than that for the stoichiometric films. The crystalline texture and the morphology have been studied as a function of the total sputtering pressure for both film types. For the transparent films, this novel deposition procedure may be applied in surface acoustic wave devices. The non-transparent AIN films exhibit some similarities to films obtained by ion vapour deposition or ion-beam-enhanced deposition methods, and the films exhibit interesting tribological properties.  相似文献   

11.
在不同的溅射气压下,采用连续磁控溅射制备了Fe/Si3N4多层膜,探讨了溅射气压对多层膜微波磁性的影响。研究发现,溅射气压影响着多层膜的沉积速率和微结构,在溅射铁子层时,Ar气流量控制在300sccm~400sccm下,在溅射氮化硅子层时,氩气与氮气的流量控制在2∶1,总流量控制在320sccm时制备得到的多层膜具有最好的磁性能。  相似文献   

12.
Polycrystalline zinc oxide films with and without admixed aluminum and copper were prepared on amorphous substrates by using a co-sputtering process. The crystallographic orientation and electrical properties varied with both sputtering gas pressure and contents of admixed aluminum or copper. In a high sputtering gas pressure a normal orientation with c-axis perpendicular to the film surface was predominant, whereas, in a low sputtering gas pressure a parallel orientation with c-axis parallel to the film surface was predominant. The admixed aluminum inhibited growth of the normal orientation, but the admixed copper enhanced a growth of the parallel one.  相似文献   

13.
With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p-n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu2O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu2O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu2O films are reported. It is known from previously published work that the formation of pure Cu2O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu2O thin films (as opposed to CuO or mixed phase CuO/Cu2O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu2O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a controlled amount of oxygen, can produce good quality p-type transparent Cu2O films with electrical resistivity ranging from 102 to 104 Ω-cm, hole mobility of 1-10 cm2/V-s, and optical band-gap of 2.0-2.6 eV. These material properties make this low temperature deposited HiTUS Cu2O film suitable for fabrication of p-type metal oxide thin film transistors. Furthermore, the capability to deposit Cu2O films with low film stress at low temperatures on plastic substrates renders this approach favourable for fabrication of flexible p-n junction solar cells.  相似文献   

14.
ZnO thin films were deposited onto glass substrates by d.c. reactive magnetron sputtering from a metallic zinc target. A systematic study has been made on the influence of sputtering pressure in the range from 0.2 Pa to 3 Pa on the film structural and optical properties. At low sputtering pressure (0.2–0.4 Pa), the film was inhomogeneous, non-stoichiometric and had low refractive index and an almost amorphous structure. At high sputtering pressure (0.6–0.8 Pa), the film was homogeneous, stoichiometric and had high refractive index and the crystallinity was improved. As the sputtering pressure was further increased (1–3 Pa), the homogeneity and the refractive index of the film had no clear variation, but the crystallinity of the film went down. As the sputtering pressure was increased from 0.2 Pa to 3 Pa, the transmittance of the film increased and the deposition rate of the film decreased.  相似文献   

15.
Molybdenum (Mo) thin films were deposited using radio frequency magnetron sputtering, for application as a metal back contact material in “substrate configuration” thin film solar cells. The variations of the electrical, morphological, and structural properties of the deposited films with sputtering pressure, sputtering power and post-deposition annealing were determined. The electrical conductivity of the Mo films was found to increase with decreasing sputtering pressure and increasing sputtering power. X-ray diffraction data showed that all the films had a (110) preferred orientation that became less pronounced at higher sputtering power while being relatively insensitive to process pressure. The lattice stress within the films changed from tensile to compressive with increasing sputtering power and the tensile stress increased with increasing sputtering pressure. The surface morphology of the films changed from pyramids to cigar-shaped grains for a sputtering power between 100 and 200 W, remaining largely unchanged at higher power. These grains were also observed to decrease in size with increasing sputtering pressure. Annealing the films was found to affect the resistivity and stress of the films. The resistivity increased due to the presence of residual oxygen and the stress changed from tensile to compressive. The annealing step was not found to affect the crystallisation and grain growth of the Mo films.  相似文献   

16.
采用射频磁控溅射技术在改性氟塑料表面沉积铝层,制备了金属/氟化高聚物复合薄膜.利用场发射扫描电镜(FESEM)及能量散射谱(EDS)分析仪对沉积的铝层进行了表面形貌的表征和化学组分的分析.初步探讨了溅射功率、气压和时间等不同溅射参数对铝层结构和铝层在氟塑料表面附着情况的影响.结果表明:溅射功率是决定复合薄膜质量的重要因素,功率过低得不到致密的铝层结构,而且铝层容易从氟塑料表面脱离,功率过高则会产生很强的热效应而使复合薄膜弯曲.溅射气压和时间分别影响铝层在氟塑料表面的沉积速率和生长厚度.  相似文献   

17.
采用直流磁控溅射法在室温玻璃基片上制备出了掺硅氧化锌(ZnO:Si)透明导电薄膜,研究了溅射功率对ZnO:Si薄膜结构、形貌、光学及电学性能的影响,实验结果表明,溅射功率对ZnO:Si薄膜的生长速率、结晶质量及电学性能有很大影响,而对其光学性能影响不大。实验制备的ZnO:LSi薄膜为六方纤锌矿结构的多晶薄膜,且具有垂直于基片方向的c轴择优取向。当溅射功率从45W增加到105W时,薄膜的晶化程度提高、晶粒尺寸增大,薄膜的电阻率减小;当溅射功率为105W时,薄膜的电阻率达到最小值3.83~104n·cm,其可见光透过率为94.41%。实验制备的ZnO:Si薄膜可以用作薄膜太阳能电池和液晶显示器的透明电极。  相似文献   

18.
Toshiyuki Oya 《Thin solid films》2009,517(20):5837-317
Structure and subsequent properties of films deposited by direct current (dc) magnetron sputtering and pulsed dc magnetron sputtering with or without inductively coupled radio-frequency (rf) plasma using a Ti target have been investigated for various discharge pressures ranging from 0.3 to 2.0 Pa. By cross-sectional scanning electron microscopy, it is found that films deposited by pulsed dc sputtering with an rf plasma at pressures of 0.3 and 1.5 Pa become denser than those deposited by dc sputtering without an rf plasma. Surface roughness also decreases with the presence of rf plasma at all discharge pressures. The change in reflectance correlates well to that in surface roughness. Decrease in resistivity due to the presence of rf plasma is remarkable for discharge pressures of 1.5 and 2.0 Pa and less remarkable for discharge pressures of 0.3 and 0.5 Pa. These result from the increase in crystallinity and film density by the presence of rf plasma in a high pressure range. It is presumed that a Ti film with a fine columnar structure results from the enhancement in the energy transferred to the surface of a growing film due to the increase in ion fraction and ion energy in the combination of pulsed dc and inductively coupled rf discharges. The effects of rf plasma on film structure and properties is more remarkable at higher discharge pressures because in this pressure range, the energy loss that occurred through collision scattering, inducing a voided structure, in conventional dc magnetron sputtering is compensated for effectively by the addition of energy to the particles in rf-plasma-assisted sputtering.  相似文献   

19.
Direct current reactive magnetron sputtering was used to deposit the thin layers of copper oxide (Cu2O) on glass substrates. A solid disc of pure copper as the target was sputtered in an argon gas under sputtering pressures varying from 0.133 to 4 Pa. The effects of the sputtering power and pressure on the structural and optical properties of Cu2O thin films were systematically studied. The deposited layers were characterized using X-ray diffraction, atomic force microscopy, profilometry and spectrophotometry. The optical transmission of the films was measured in the visible region. The increase in pressure resulted in a higher growth rate than increasing sputtering power. The increase in power produced Cu2O thin films that were detrimental to the optical transmission of the films.  相似文献   

20.
Sputtered magnetic tape media were prepared by DC magnetron sputtering on polyimide substrates at different deposition conditions. The structure, texture and magnetic properties of the sputtered films were systematically studied using transmission electron microscopy, X-ray diffraction and alternating gradient magnetometer. The microstructure of sputtered media is greatly influenced by the deposition conditions, such as deposition pressure and rate. High sputtering pressure and slow deposition rate produced high coercivity and low delta M films. The sputtered tape media have the desired grain segregation structure which is essential for low-noise media fabrication. X-ray diffraction analysis revealed that the stress of film is closely related to the deposition pressure. The stress of the film stack can be tuned for specific applications and good magnetic properties can be obtained under optimized deposition condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号