首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
连续非线性系统的迭代学习控制方法*   总被引:7,自引:1,他引:7  
本文根据误差收敛准则,提出了连续非线性系统的迭代学习控制算法,给出了PID型学习控制算法的收效条件,实际应用表明,该方法可以逼近预定的任意轨线。  相似文献   

2.
非线性系统闭环P型迭代学习控制的收敛性   总被引:15,自引:3,他引:15  
本文得到并证明了当被控系统的状态方程为一类非线性方程时,采用闭环P型学习律迭代学习控制的收敛的充分条件和必要条件,最后,我们给出了典型的仿真结果。  相似文献   

3.
不确定性机器人系统自适应鲁棒迭代学习控制   总被引:1,自引:1,他引:1  
利用Lyapunov方法, 提出了一种不确定性机器人系统的自适应鲁棒迭代学习控制策略, 整个系统在迭代域里是全局渐近稳定的. 所考虑的机器人系统同时包含了结构和非结构不确定性. 在设计时, 系统的不确定性被分解成可重复性和非重复性两部分, 并考虑了系统的标称模型. 在所提出的控制策略中, 自适应策略用来估算做法确定性的界, 界的修正与迭代学习控制量一样的迭代域得以实现的. 计算机仿真表明本文提出的控制策略是有效的.  相似文献   

4.
非线性系统的PD型迭代学习控制   总被引:14,自引:1,他引:14  
非线性系统的PD型迭代学习控制孙明轩黄宝健张学智(西安工业学院电子系西安710032)关键词初始条件问题,迭代学习控制,非线性系统.1)国家自然科学基金资助项目.收稿日期1996-07-251引言运用迭代学习控制技术设计控制器时,只需要通过重复操作获...  相似文献   

5.
陈华东  蒋平 《控制与决策》2002,17(11):715-718
针对一类单输入单输出不确定非线性重复跟踪系统,提出一种基于完全未知高频反馈增益的自适应迭代学习控制,与普通迭代学习控制需要复习增益稳定性前提条不同,自适应迭代学习控制通过不断修改Nussbaum形式的高频学习增益达到收敛,经证明当迭代次数i→∞时,重复跟踪误差可一致收敛到任意小界δ。仿真结果表明了该控制方法的有效性。  相似文献   

6.
许汉珍 《控制与决策》1994,9(5):360-366
本文采用伪线性化变换将船舶操纵非线性系统近似地化为线性可控正则型,并对线性化系统设计了一种连续的变结构以提高整个闭环系统的鲁棒性。该方案用于限制水域中船舶的航向航迹纠编控制中,取得了预期的结果。  相似文献   

7.
一类未知非线性系统的智能迭代学习控制   总被引:6,自引:0,他引:6       下载免费PDF全文
从自适应的角度设计迭代学习控制,将神经网络引入迭代学习控制中。学习控制与自适应控制相结合,使得对网络权值的学习和跟踪控制同时进行,克服 了经典迭代学习控制的一些缺陷。基于Lyapunov直接方法,证明了整个控制系统的稳定并实现了任意精度的跟踪。实例仿真结果说明了算法 的有效性及其所具有的优点。  相似文献   

8.
分析了传统小波网络的不足,同时考虑到实际中学习样本可能被非高斯白噪声干扰的情况,提出用于辨识非线性系统的鲁棒正交小波网络,并对辨识精度和收敛性进行了分析。理论分析和仿真研究表明,该文提出的方法是有效的。  相似文献   

9.
基于非线性连续动态的模型辨识算法, 给出了非线性连续系统的一种非常有效的迭代学习控制方案. 该控制方案不要求非线性连续系统中具体的非线性关系, 并且容许系统初始误差的存在.  相似文献   

10.
一类非线性相似组合大系统的迭代学习控制   总被引:3,自引:0,他引:3  
严星刚 《控制与决策》1998,13(3):254-257,262
利用状态反馈部分线性化技术研究了一类非线性相似组合大系统的迭代学习控制问题。与现有结果不同的是,它不直接研究系统本身,而是构造一个适当的 反馈,然后对闭环系统给出其迭代学习收敛的充分条件,  相似文献   

11.
In this paper, a feedforward neural network with sigmoid hidden units is used to design a neural network based iterative learning controller for nonlinear systems with state dependent input gains. No prior offline training phase is necessary, and only a single neural network is employed. All the weights of the neurons are tuned during the iteration process in order to achieve the desired learning performance. The adaptive laws for the weights of neurons and the analysis of learning performance are determined via Lyapunov‐like analysis. A projection learning algorithm is used to prevent drifting of weights. It is shown that the tracking error vector will asymptotically converges to zero as the iteration goes to infinity, and the all adjustable parameters as well as internal signals remain bounded.  相似文献   

12.
对于具有重复运动性质的对象,迭代学习控制是一种有效的控制方法.针对一类离散非线性时变系统在有限时域上的精确轨迹跟踪问题,提出了一种开闭环PI型迭代学习控制律.这种迭代律同时利用系统当前的跟踪误差和前次迭代控制的跟踪误差修正控制作用.给出了所提出的学习控制律收敛的充分必要条件,并采用归纳法进行了证明.最后用仿真结果对收敛条件进行了验证.  相似文献   

13.
Recent Advances in Iterative Learning Control   总被引:6,自引:0,他引:6  
In this paper we review the recent advances in three sub-areas of iterative learning control (ILC): 1) linear ILC for linear processes, 2) linear ILC for nonlinear processes which are global Lipschitz continuous (GLC), and 3) nonlinear ILC for general nonlinear processes. For linear processes, we focus on several basic configurations of linear ILC. For nonlinear processes with linearILC, we concentrate on the design and transient analysis which were overlooked and missing for a long period. For general classes of nonlinear processes, we demonstrate nonlinear ILC methods based on Lyapunov theory, which is evolving into a new control paradigm.  相似文献   

14.
This paper presents a nonlinear iterative learning control (NILC) for nonlinear time‐varying systems. An algorithm of a new strategy for the NILC implementation is proposed. This algorithm ensures that trajectory‐tracking errors of the proposed NILC, when implemented, are bounded by a given error norm bound. A special feature of the algorithm is that the trial‐time interval is finite but not fixed as it is for the other iterative learning algorithms. A sufficient condition for convergence and robustness of the bounded‐error learning procedure is derived. With respect to the bounded‐error and standard learning processes applied to a virtual robot, simulation results are presented in order to verify maximal tracking errors, convergence and applicability of the proposed learning control.  相似文献   

15.
齿隙非线性输入系统的迭代学习控制   总被引:2,自引:1,他引:2  
朱胜  孙明轩  何熊熊 《自动化学报》2011,37(8):1014-1017
针对一类具有输入齿隙特性的非线性系统, 提出一种实现有限作业区间轨迹跟踪的迭代学习控制方法. 在系统不确定项可参数化的情形下, 基于类Lyapunov方法设计迭代学习控制器, 回避了常规迭代学习控制中受控系统非线性特性需满足全局Lipschitz连续条件的要求. 对未知时变参数进行泰勒级数展开, 参数估计采用微分学习律, 并在控制器设计中, 采用双曲函数处理级数展开后的余项以及齿隙特性里的有界误差项, 以保证控制器可导, 且可抑制颤振. 引入一级数收敛序列确保系统输出完全跟踪期望轨迹, 且闭环系统所有信号有界.  相似文献   

16.
This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results.  相似文献   

17.
An iterative learning control algorithm with iteration decreasing gain is proposed for stochastic point‐to‐point tracking systems. The almost sure convergence and asymptotic properties of the proposed recursive algorithm are strictly proved. The selection of learning gain matrix is given. An illustrative example shows the effectiveness and asymptotic trajectory properties of the proposed approach.  相似文献   

18.
严格反馈非线性时变系统的迭代学习控制   总被引:4,自引:0,他引:4  
针对一类含未知时变参数的严格反馈非线性系统, 提出一种实现有限作业区间轨迹跟踪控制的迭代学习算法. 基于Lyapunov-like方法设计控制器, 回避了常规迭代学习控制中受控系统非线性特性需满足全局Lipschitz连续条件的要求. 以反推设计(Backstepping)方法设计控制器, 为使得虚拟控制项可导, 引入一级数收敛序列; 将时变参数展开为有限项多项式形式, 在控制器设计中采取双曲正切函数处理余项对于系统跟踪性能的影响. 理论分析表明, 闭环系统所有信号有界, 并能够实现系统输出完全收敛于理想轨迹.  相似文献   

19.
The purposes of this paper are (i) to critically review existing results on the use of the systems theory for repetitive processes in the analysis of a wide class of linear iterative control laws, and (ii) to present some new results on controller design using this general approach. This paper first presents results on the stability and convergence properties of a general class of iterative learning control schemes using, in the main, theory first developed for the subclass of so‐called differential and discrete linear repetitive processes. A general learning law that uses information from the current and a finite number of previous trials is considered and the results are interpreted in terms of basic systems theoretic concepts such as the relative degree and minimum phase characteristics. It is also shown that a number of other approaches reported in the literature are, in fact, special cases of the results obtained in the repetitive process setting. In the second part of the paper, new results on controller design are given based on 2D transfer function matrices together with new results on the robustness of norm optimal iterative learning control schemes.  相似文献   

20.
具有滞后的饱和非线性工业控制系统的迭代学习控制   总被引:7,自引:1,他引:7  
基于稳态优化中递阶控制结构,对具有滞后的非平滑饱和非线性工业控制系统施行迭代学习控制,提出了期望目标轨线δ-可达以及迭代学习算法的ε-收敛的慨念,给出了加权超前PD-型开环迭代学习算法,对算法的收敛性进行论证.数字仿真证明了算法的有效性,并表明对工业控制系统的动态品质有显著改进.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号