首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New gate logics, standby/active mode logic I and II, for future 1 Gb/4 Gb DRAMs and battery operated memories are proposed. The circuits realize sub-l-V supply voltage operation with a small 1-μA standby subthreshold leakage current, by allowing 1 mA leakage in the active cycle. Logic I is composed of logic gates using dual threshold voltage (Vt) transistors, and it can achieve low standby leakage by adopting high Vt transistors only to transistors which cause a standby leakage current. Logic II uses dual supply voltage lines, and reduces the standby leakage by controlling the supply voltage of transistors dissipating a standby leakage current. The gate delay of logic I is reduced by 30-37% at the supply voltage of 1.5-1.0 V, and the gate delay of logic II is reduced by 40-85% at the supply voltage of 1.5-0.8 V, as compared to that of the conventional CMOS logic  相似文献   

2.
A new output buffer realized with low-voltage (+1.8 V) devices to drive high voltage signals for +3.3 V interface, such as peripheral component interconnect extended (PCI-X) applications in a 180 nm CMOS process is proposed in this paper. As PCI-X is a +3.3 V interface, the high voltage gate–oxide stress poses a serious problem to design PCI-X I/O circuits in a 180 nm CMOS process. The performance of the proposed output buffer is examined using Cadence software and the model parameters of a 180 nm CMOS process. The experimental results have hither to confirm that the proposed output buffer can be successfully operated at 100 MHz frequency without suffering high voltage gate–oxide overstress in the +3.3Vinterface.Anew level converter realized with +1.8Vdevices that can convert 0/1Vvoltage swing to 0/3.3 V voltage swing is also presented in this paper. The simulation results have confirmed that the proposed level converter can be operated accurately without any voltage drop. The topology, however, reports low sensitivity and has features suitable for VLSI implementation. The proposed circuits are suited for low power design without performance degradation.  相似文献   

3.
A novel SPI (Self-aligned Pocket Implantation) technology has been presented, which improves short channel characteristics without increasing junction capacitance. This technology features a localized pocket implantation using gate electrode and TiSi2 film as self-aligned masks. An epi substrate is used to decrease the surface impurity concentration in the well while maintaining high latch-up immunity. The SPI and the gate to drain overlapped structure such as LATID (Large-Angle-Tilt Implanted Drain) technology allow use of the ultra low impurity concentration in the channel region, resulting in higher saturation drain current at the same gate over-drive compared to conventional device. The carrier velocity reaches 8×106 cm/sec and subthreshold slope is less than 75 mV/dec, which can be explained by low impurity concentration in the channel and in the substrate. The small gate depletion layer capacitance of SPI MOSFET was estimated by C-V measurement, and it can explain high performance such as small subthreshold slope. On the other hand, the problem and the possibility of low supply voltage operation have been discussed, and it has been proposed that small subthreshold slope is prerequisite for low power device operated at low supply voltage. In addition, the drain junction capacitance of SPI is decreased by 65% for N-MOSFET's, and 69% for P-MOSFET's both compared with conventional devices. This technology yields an unloaded CMOS inverter of 48 psec delay time at the supply voltage of 1.5 V  相似文献   

4.
Novel full-swing BiCMOS/BiNMOS logic circuits using bootstrapping in the pull-up section for low supply voltage down to 1 V are reported. These circuit configurations use noncomplementary BiCMOS technology. Simulations have shown that they outperform other BiCMOS circuits at low supply voltage using 0.35 μm BiCMOS process. The delay and power dissipation of several NAND configurations have been compared. The new circuits offer delay reduction between 40 and 66% over CMOS in the range 1.2-3.3 V supply voltage. The minimum fanout at which the new circuits outperform CMOS gate is 5, which is lower than that of other gates particularly for sub-2.5 V operation  相似文献   

5.
The trade-off between threshold voltage (Vth) and the minimum gate length (Lmin) is discussed for optimizing the performance of buried channel PMOS transistors for low voltage/low power high-speed digital CMOS circuits. In a low supply voltage CMOS technology it is desirable to scale Vth and Lmin for improved circuit performance. However, these two parameters cannot be scaled independently due to the channel punch-through effect. Statistical process/device modeling, split lot experiments, circuit simulations, and measurements are performed to optimize the PMOS transistor current drive and CMOS circuit speed. We show that trading PMOS transistor Vth for a smaller Lmin results in faster circuits for low supply voltage (3.3 to 1.8 V) n+-polysilicon gate CMOS technology, Circuit simulation and measurements are performed in this study. Approximate empirical expressions are given for the optimum buried channel PMOS transistor V th for minimizing CMOS circuit speed for cases involving: (1) constant capacitive load and (2) load capacitance proportional to MOS gate capacitance. The results of the numerical exercise are applied to the centering of device parameters of a 0.5 μm 3.3 V CMOS technology that (a) matches the speed of our 0.5 μm 5 V CMOS technology, and (b) achieves good performance down to 1.8 V power supply. For this process the optimum PMOS transistor Vth (absolute value) is approximately 0.85-0.90 V  相似文献   

6.
High-performance CMOS circuits are fabricated from excimer-laser-annealed poly-Si TFTs on a glass substrate (300×300 mm). The propagation delay time of the 121 stage CMOS ring oscillators with 0.5 μm gate length is 0.18 nsec at 5 V supply voltage. The maximum operating frequency of the 40-stage shift registers with 1 μm gate length is 133 MHz at 5 V supply voltage. This value is high enough for peripheral CMOS circuits with line-at-a-time addressing  相似文献   

7.
A quiet logic family-complementary metal-oxide-semiconductor (CMOS) current steering logic (CSL)-has been developed for use in low-voltage mixed-signal integrated circuits. Compared to a CMOS static logic gate with its output range of ΔVlogic≈Vdd , a CSL gate swings only ΔVlogic≈VT+0.25 V because the constant current supplied by the PMOS load device is steered to ground through either an NMOS diode-connected device or switching network. Owing to the constant current, digital switching noise is 100× smaller than in static logic. Another useful feature which can be used to calibrate CSL speed against process, temperature, and voltage variations is propagation delay that is approximately constant versus supply voltage and linear with bias current. Several CSL circuits have been fabricated using 0.8 and 1.2 μm high-VT n-well CMOS processes. Two self-loaded 39-stage ring oscillators fabricated using the 1.2 μm process (1.2 V power supply) exhibited power-delay products of 12 and 70 fJ with average propagation delays of 0.4 and 0.7 ns, respectively. High-VT and low-VT CSL ALU's were operational at V dd≈=0.70 V and Vdd≈0.40 V, respectively  相似文献   

8.
A 64-bit carry look ahead adder using pass transistor BiCMOS gates   总被引:1,自引:0,他引:1  
This paper describes a 64-bit two-stage carry look ahead adder utilizing pass transistor BiCMOS gate. The new pass transistor BiCMOS gate has a smaller intrinsic delay time than conventional BiCMOS gates. Furthermore, this gate has a rail-to-rail output voltage. Therefore the next gate does not have a large degradation of its driving capability. The exclusive OR and NOR gate using the pass transistor BiCMOS gate shows a speed advantage over CMOS gates under a wide variance in load capacitance. The pass transistor BiCMOS gates were applied to full adders, carry path circuits, and carry select circuits. In consequence, a 64-bit two-stage carry look ahead adder was fabricated using a 0.5 μm BiCMOS process with single polysilicon and double-metal interconnections. A critical path delay time of 3.5 ns was observed at a supply voltage of 3.3 V. This is 25% better than the result of the adder circuit using CMOS technology. Even at the supply voltage of 2.0 V, this adder is faster than the CMOS adder  相似文献   

9.
An efficient low power protection scheme for thin gate oxide of high voltage (HV) DMOS transistor is presented. To prevent gate-oxide breakdown and protect HV transistor, the voltage controlling its gate must be within 5 V from the HV supply. Thus signals from the low voltage domain must be level shifted to control the gate of this transistor. Usually this level shifting involves complex circuits that reduce the speed besides requiring of large power and area. In this paper, a simple and efficient protection technique for gate-oxide breakdown is achieved by connecting a capacitor divider structure to the floating-gate node of HV transistor to increase its effective gate oxide thickness. Several HV circuits, including: positive and negative HV doublers and level-up shifters suitable for ultrasound sensing systems are built successfully around the proposed technique. These circuits were implemented with 0.8 μm CMOS/DMOS HV DALSA process. Simulation and experimental results prove the good functionality of the designed HV circuits using the proposed protection technique for voltages up to 200 V.  相似文献   

10.
对多晶硅双栅全耗尽SO I CM O S工艺进行了研究,开发出了1.2μm多晶硅双栅全耗尽SO I CM O S器件及电路工艺,获得了性能良好的器件和电路。NM O S和PM O S的阈值电压绝对值比较接近,且关态漏电流很小,NM O S和PM O S的驱动电流分别为275μA/μm和135μA/μm,NM O S和PM O S的峰值跨导分别为136.85 m S/mm和81.7 m S/mm。在工作电压为3 V时,1.2μm栅长的101级环振的单级延迟仅为66 ps。  相似文献   

11.
A Thin-Film-Silicon-On-Insulator Complementary BiCMOS (TFSOI CBiCMOS) technology has been developed for low power applications. The technology is based on a manufacturable, near-fully-depleted 0.5 μm CMOS process with the lateral bipolar devices integrated as drop-in modules for CBiCMOS circuits. The near-fully-depleted CMOS device design minimizes sensitivity to silicon thickness variation while maintaining the benefits of SOI devices. The bipolar device structure emphasizes use of a silicided polysilicon base contact to reduce base resistance and minimize current crowding effects. A split-oxide spacer integration allows independent control of the bipolar base width and emitter contact spacing. Excellent low power performance is demonstrated through low current ECL and low voltage, low power CMOS circuits. A 70 ps ECL gate delay at a gate current of 20 μA is achieved. This represents a factor of 3 improvement over bulk trench-isolated double-polysilicon self-aligned bipolar circuits. Similarly, CMOS gate delay shows a factor of 2 improvement over bulk silicon at a power supply voltage of 3.3 V. Finally, a 460 μW 1 GHz prescaler circuit is demonstrated using this technology  相似文献   

12.
Novel full-swing BiCMOS/BiNMOS logic circuits which use Schottky diode in the pull-up section for low supply-voltage regime are developed. The full-swing pull-up operation is performed by saturating the bipolar transistor with a base current pulse. After which, the base is isolated and bootstrapped to a voltage higher than VDD. The BiCMOS/BiNMOS circuits do not require a PNP bipolar transistor. They outperform other BiCMOS circuits at low supply voltage, particularly at 2 V using 0.5 μm BiCMOS technology. Delay, area, and power dissipation comparisons have been performed. The new circuits offer delay reduction at 2 V supply voltage of 37% to 56% over CMOS. The minimum fanout at which the new circuits outperform CMOS gate is 2 to 3. Furthermore, the effect of the operating frequency on the delay of a wide range of BiCMOS and BiNMOS circuits is reported for the first time, showing the superiority of the Schottky circuits  相似文献   

13.
With a 3.3-V interface, such as PCI-X application, high-voltage overstress on the gate oxide is a serious reliability problem in designing I/O circuits by using only 1/2.5-V low-voltage devices in a 0.13-mum CMOS process. Thus, a new output buffer realized with low-voltage (1- and 2.5-V) devices to drive high-voltage signals for 3.3-V applications is proposed in this paper. The proposed output buffer has been fabricated in a 0.13-mum 1/2.5-V 1P8M CMOS process with Cu interconnects. The experimental results have confirmed that the proposed output buffer can be successfully operated at 133 MHz without suffering high-voltage gate-oxide overstress in the 3.3-V interface. In addition, a new level converter that is realized with only 1- and 2.5-V devices that can convert 0/1-V voltage swing to 1/3.3-V voltage swing is also presented in this paper. The experimental results have also confirmed that the proposed level converter can be operated correctly  相似文献   

14.
A new class AB output stage for CMOS op-amps is proposed with simple and accurate quiescent current control using floating gate transistors. The proposed stage can be operated with a supply voltage close to a transistor's threshold voltage. Experimental results are provided showing a 15 MHz gain-bandwidth product when it is used as the second stage of an op-amp with 1.5 V supply voltage in a standard 0.8 m CMOS technology.  相似文献   

15.
Digital CMOS IC's in 6H-SiC operating on a 5-V power supply   总被引:7,自引:0,他引:7  
A CMOS technology in 6H-SiC utilizing an implanted p-well process is developed. The p-wells are fabricated by implanting boron ions into an n-type epilayer. PMOS devices are fabricated on an n-type epilayer while the NMOS devices are fabricated on implanted p-wells using a thermally grown gate oxide. The resulting NMOS devices have a threshold voltage of 3.3 V while the PMOS devices have a threshold voltage of -4.2 V at room temperature. The effective channel mobility is around 20 cm 2/Vs for the NMOS devices and around 7.5 cm2/Vs for the PMOS devices. Several digital circuits, such as inverters, NAND's, NOR's, and 11-stage ring oscillators are fabricated using these devices and exhibited stable operation at temperatures ranging from room temperature to 300°C. These digital circuits are the first CMOS circuits in 6H-SiC to operate with a 5-V power supply for temperatures ranging from room temperature up to 300°C  相似文献   

16.
An ECL circuit with an active pull-down device, operated from a CMOS supply voltage, is described as a high-speed digital circuit for a 0.25-μm BiCMOS technology. A pair of ECL/CMOS level converters with built-in logic capability is presented for effective intermixing of ECL with CMOS circuits. Using a 2.5-V supply and a reduced-swing BiNMOS buffer, the ECL circuit has reduced power dissipation, while still providing good speed. A design example shows the implementation of complex logic by emitter and collector dottings and the selective use of ECL circuits to achieve high performance  相似文献   

17.
This paper describes new CMOS bandgap reference (BGR) circuits capable of providing sub-1-V voltage reference while using only one BJT. The circuits use the concept of reverse bandgap voltage principle (RBVP) to generate attenuated versions of the silicon bandgap voltage of 1.205?V. Also, as opposed to the previously known sub-1-V BGR by Banba et?al. (IEEE J Solid State Circuits 34:670?C674, 1999), the circuits can be operated with lower supply voltage down to a 1.3?V supply. Based on the scheme, a 550?mV BGR is implemented in 65?nm CMOS process, with peak-to-peak variation of 7.19?mV across devices corners, temperature range of ?20 to 80° and supply range of 1.6?C2.0?V.  相似文献   

18.
The supply voltage to threshold voltage ratio is reduced with each new technology generation. The gate overdrive variation with temperature plays an increasingly important role in determining the speed characteristics of CMOS integrated circuits. The temperature-dependent propagation delay characteristics, as shown in this brief, will experience a complete reversal in the near future. Contrary to the older technology generations, the speed of circuits in a 45-nm CMOS technology is enhanced when the temperature is increased at the nominal supply voltage. Operating an integrated circuit at the prescribed nominal supply voltage is not preferable for reliable operation under temperature fluctuations. A design methodology based on optimizing the supply voltage for temperature-variation-insensitive circuit performance is proposed in this brief. The optimum supply voltage is 45% to 53% lower than the nominal supply voltage in a 180-nm CMOS technology. Alternatively, the optimum supply voltage is 15% to 35% higher than the nominal supply voltage in a 45-nm CMOS technology. The speed and energy tradeoffs in the supply voltage optimization technique are also presented  相似文献   

19.
A design method for RF power Si-MOSFETs suitable for low-voltage operation with high power-added efficiency is presented. In our experiments, supply voltages from 1 V to 3 V are examined. As the supply voltage is decreased, degradation of transconductance also takes place. However, this problem is overcome, even at extremely low supply voltages, by adopting a short gate length and also increasing the N/sup -/ extension impurity concentration-which determines the source-drain breakdown voltage (V/sub dss/)-and thinning the gate oxide-which determines the TDDB between gate and drain. Additionally, in order to reduce gate resistance, the Co-salicide process is adopted instead of metal gates. With salicide gates, a 0.2 /spl mu/m gate length is easily achieved by poly Si RIE etching, while if metal gates were chosen, the metal film itself would have to be etched by RIE and it would be difficult to achieve such a small gate length. Although the resistance of a Co-salicided gate is higher than that of metal gate, there is no evidence of a difference in power-added efficiency when the finger length is below 100 /spl mu/m. It is demonstrated that 0.2 /spl mu/m gate length Co-salicided Si MOSFETs can achieve a high power-added efficiency of more than 50% in 2 GHz RF operation with an adequate breakdown voltage (V/sub dss/). In particular, an efficiency of more than 50% was confirmed at the very low supply voltage of 1.0 V, as well as at higher supply voltages such as 2 V and 3 V. Small gate length Co-salicided Si-MOSFETs are a good candidate for low-voltage, high-efficiency RF power circuits operating in the 2 GHz range.  相似文献   

20.
Switched-current (SI) circuits represent a current-mode analog sampled-data signal processing technique realizable in standard digital CMOS technologies. Unlike switched-capacitor (SC) circuits, SI circuits require only a standard digital CMOS process. SI circuits use MOS transistors as the storage elements to provide analog memory capability. Similar to the operation of dynamic logic circuits, a voltage is sampled onto the gate of a MOSFET and held on its noncritical gate capacitance. The held voltage signal on the gate causes a corresponding held current signal in the drain, usually proportional to the square of the gate-to-source voltage. Design issues related to the implementation and performance of SI circuits are presented. SI filters show comparable performance to SC filters except in terms of passband accuracy. The major source of error is nonunity current gain in the SI integrator due to device mismatch and clock-feedthrough effects. For the initial CMOS prototypes, the current track and hold (T/H) gain error was about 2.5%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号