首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influence of N, P and K application through inorganic and organic fertilizers on P and K removal in crop plants, changes in soil fertility status and their balance in the soil-plant (maize-wheat-cowpea fodder) studied for the first 22 years of a long-term experiment at Punjab Agricultural University farm, Ludhiana, India. The results showed that P uptake by wheat was about 1.5 times that of maize, whereas K uptake by wheat was only 1.1 times that of maize. The apparent P recovery by both maize and wheat depended on the rates of N, P and K application. Fertilizer rates greater than the recommended (150% NPK) resulted in lower P recoveries. At optimum level of N, P and K application (100% NPK) the mean P recovery (for 22 years) was 30.3% (±5.47) in wheat as compared to 20% (±11.35) in maize. The apparent P recovery in maize declined as the number of cropping years progressed. In 100% NPK plots, it declined from 45.6% in 1973 to 12.5% in 1992. The decline in P recovery was due to the accumulation of plant available P in the soil which increased from the initially low status to high-very high due to continuous application of P fertilizer. The application of FYM in conjunction with 100% NPK led to significantly greater accumulation of available P as compared to 100% NPK treatment alone despite the higher amount of total P removal in the former treatment than that from the latter. A trifle build-up in available K was observed in K amended plots notwithstanding the negative balance of K based on the approach of input-output relationship. The release of K from non-exchangeable form contributed towards K uptake by the crops. The results suggested the need for modifying the existing K fertilizer recommendations to compensate for gradual loss of native soil K fertility.  相似文献   

2.
Field experiments were conducted in Niger with pearl millet (Pennisetum glaucum [L] R. Br.) in which the crop was fertilized with phosphate rock (PR) from two deposits from Niger (Tahoua and Parc W). The PR was applied either as ground rock or as partially acidulated phosphate rock (PAPR) and was compared to water soluble sources (TSP and SSP) in terms of millet yield response. The ability of five soil testing procedures (Bray P1, Bray P2, Mehlich 1, Olsen, and water extraction) to establish P sufficiency levels for millet was tested. The results of all soil testing methods were highly correlated amongst each other for the treatments receiving water-soluble fertilizers or PAPRs. None of the soil testing procedures which were evaluated was able to accurately measure available P when PRs were applied. Sufficiency levels were calculated for the PAPR and water-soluble fertilizers using nonlinear regression analysis and a graphic procedure for each of the P soil testing methods. The Bray P1 method appeared to be the most reliable procedure and was used to study the effect of accumulated total or total water + citrate-soluble P rates on final P availability. A single quadratic function was able to describe this effect when the P rates were expressed as water + citrate-soluble P for both PAPRs and water-soluble fertilizers independently of the P fertilizer source.  相似文献   

3.
Use of15N-depleted fertilizer materials have been primarily limited to fertilizer recovery studies of short duration. The objective of this study was to determine if15N-depleted fertilizer N could be satisfactorily used as a tracer of residual fertilizer N in plant tissue and various soil N fractions through a corn (Zea mays L.) -winter rye (Secale cereale L.) crop rotation. Nitrogen as15N-depleted (NH4)2SO4 was applied at five rates (0, 84, 168, 252, and 336 kg N ha–1) to corn. Immediately following corn harvest a winter rye cover crop treatment was initiated. Residual fertilizer N was easily detected in the soil NO 3 - -N fraction following corn harvest (140-d after application). Low levels of exchangeable NH 4 + -N (<2.5 mg kg–1) did not permit accurate isotope-ratio analysis. Fertilizer-derived N recovered in the soil total N fraction following corn harvest was detectable in the 0 to 30-cm depth at each N rate and in the 30 to 60 and 60 to 90-cm depths at the 336 kg ha–1 N rate. Atom %15N concentrations in the nonexchangeable NH 4 + -N fraction did not differ from the control at each N rate. Nitrogen recovery by the winter rye cover crop reduced residual soil NO 3 - -N levels below the 10 kg ha–1 level needed for accurate isotope-ratio analysis. Atom %15N concentrations in the soil total N fraction (approximately one yr after application) were indistinguishable from the control plots below the 168, 252, and 336 kg ha–1 N rate at the 0 to 30, 30 to 60, and 60 to 90-cm depths, respectively. Recovery of residual fertilizer N by the winter rye cover crop was verified by measuring significant decreases in atom %15N concentrations in rye tissue with increasing N rates. The greatest limitation to the use of15N-depleted fertilizer N as a tracer of residual fertilizer N in a corn-rye crop rotation appears to be its detectibility from native soil N in the total N pool.Research partially supported by grants from the National Fertilizer and Environmental Research Center/TVA and the Virginia Division of Soil and Water Conservation.  相似文献   

4.
Labelled Ca(H2PO4)2 · H2O was added to two soils (an Oxisol and a vertisol) at two rates, both as a point source and completely dispersed through the soil. The point source treatments included two spatial distributions at each of two percentages of soil volume fertilized. Total and fertilizer phosphorus uptake by wheat (Triticum aestivum) grown for 42 days were determined in a glasshouse experiment. Uptake of fertilizer phosphorus was not affected by spatial distribution, but declined in the Oxisol as percentage soil volume fertilized increased at the low application rate. The implications of these results in terms of the effects of cultivation on fertilizer availability are briefly discussed.  相似文献   

5.
The objective of this work was to develop and evaluate a soil test suitable for estimating the phosphorus status of soils whether they were fertilized with soluble or sparingly soluble P fertilizers or both. Four New Zealand soils of contrasting P sorption capacity and exchangeable Ca content were incubated alone or with monocalcium phosphate (MCP), reactive North Carolina (NC) phosphate rock or unreactive Florida (FRD) rock, at 240 mg P kg–1 soil, to allow the P sources of different solubilities to react with each soil and provide soil samples containing different amounts of extractable P, Ca and residual phosphate rock. The phosphorus in the incubated soils was fractionated into alkali soluble and acid soluble P fractions using a sequential extraction procedure to assess the extent of phosphate rock dissolution. Eight soil P tests [three moderately alkaline — Olsen (0.5M NaHCO3) modified Olsen (pretreatment with 1M NaCl) and Colwell; three acid tests — Bray 1, modified Bray 1 and Truog; and two resin tests — bicarbonate anion exchange resin (AER) and combined AER plus sodium cation exchange resin (CER)] were assessed in their ability to extract P from the incubated soils.The 0.5M NaHCO3 based alkaline tests could not differentiate between the Control and FRD treatments in any soil nor between the Control, NC and FRD treatments in the high P sorption soils. The acid extractants appeared to be affected by the P sorption capacity of the soil probably because of reabsorption of dissolved P in the acid medium. The AER test gave results similar to Olsen. Only the combined AER + CER test extracted P in amounts related to the solubility of the P sources incubated with each soil. Furthermore, when soil samples were spiked with FRD and NC and extracted immediately, the P extracted by the AER + CER test, over and above the control soils, increased with the amount and chemical reactivity of the rocks. There was no extraction of rock P by any of the alkaline extractions.Increases in the amounts of P extracted (P) by each soil test from the fertilized soils, over and above the control soils were compared with the amounts ofP dissolved from the fertilizers during incubation (measured by P fractionation). Soil P sorption capacity had least influence on the amounts of P extracted by the AER + CER and Colwell tests. However, the Colwell test was unable to differentiate between all P sources in all four soils and suffered from the disadvantage of producing coloured extracts. The AER + CER test appeared to have the potential to assess the available P status of soils better than the other tests used because of its ability to extract a representative portion of residual PR (in accordance with the amount and reactivity) and dissolved P, and thus to differentiate between fertilizer treatments in all four soils.  相似文献   

6.
河西走廊灌区质地中壤的灌漠土上,21年的长期定位试验表明:无有机肥条件下连年施用化肥比无肥处理增产粮食19.6%-300.5%,比有机肥增产16.2%~101.6%,对粮食增产贡献率平均达50%。连续平衡施用化肥,土壤有机质含量连续19年下降了24.9%~27.4%;土壤全N比初始年提高13.7%~46.1%,速效N含量呈稳中下降的动态:土壤全P含量比初始年提高4.4%~5.1%,速效P含量提高16.3%-19.1%;土壤K素库处于长期亏缺状态。速效K含量呈稳步降低的动态。化肥养分具有明显的间接培肥效应,在生物循环中以有机肥为载体下年输入土壤的N、P、K化肥养分分别占当年投入量的27.1%~31_3%、23.8%~27.0%和33.2%;化肥增产的秸秆有机c输入下年土壤的达567.3~626.7kg/hm。,证明有机肥中相当一部分养分来自化肥及其化肥的生产物。  相似文献   

7.
Field experiments were conducted during 1989 to 1991 on a loamy sand (Typic ustochrept) soil to study the K nutrition of soybean. Soybean responded significantly up to 50 kg K ha–1 when applied 1/2 of K at planting and 1/2 at flower initiation (two split) or applying 1/3 K at planting, 1/3 at flower initiation and 1/3 at pod development (three splits). Split application was more beneficial than applying full K at time of planting due to higher leaf area index, crop growth rate, chlorophyll content of fresh leaves, K accumulation in soybean and better agronomic and physiological efficiency of applied K. Agronomic efficiency, physiological efficiency and apparent recovery of K reduced as rate of applied K was increased from 50 to 75 kg ha–1. Highest K+ concentration (3.4 % of dry matter) was recorded in 30-day-old plants at 75 kg K ha–1 which depressed progressively with the age of the crop. At maturity, the K concentration of soybean seed varied from 1.5% (unfertilised K plants) to 2.1 % (when 75 kg K ha–1 was applied in three splits).  相似文献   

8.
The Pi, Colwell, Bray 1, calcium acetate lactate (CAL) and Truog phosphorus (P) soil test reagents were assessed in two field experiments on lateritic soils in Western Australia that had been fertilized four years previously (1984) with triple superphosphate, North Carolina rock phosphate, Queensland rock phosphate, and in one experiment, Calciphos. Soil samples to measure soil P test were collected February 1987. Soil P test was related to seed (grain) yields measured later in 1987. Different crop species were grown on different sections of the same plot at each site. The species were lupins (Lupinus angustifolius), barley (Hordeum vulgare) and oats (Avena sativa) at one site, and lupins, oats, triticale (×Triticosecale) and rapeseed (Brassica napus) at the other site. For each reagent, the soil P test calibration, which is the relationship between yield, expressed as a percentage of the maximum yield, and soil P test, generally differed for different plant species and for different fertilizer types. Variations in soil P test required to produce half the maximum yield of each species at each site was least for the CAL reagent followed by the Colwell reagent.  相似文献   

9.
Data was assembled from experiments on the fate of15N-labelled fertilizer applied to wheat (Triticum spp.) grown in different parts of the world. These data were then ranked according to the annual precipitation-evaporation quotient for each experimental location calculated from the average long-term values of precipitation and potential evaporation. Percentage recovery of15N fertilizer in crop and soil varied with location in accordance with the precipitation-evaporation quotient. In humid environments more15N fertilizer was recovered in the crop than in the soil, while in dry environments more15N fertilizer was recovered in the soil than in the crop. Irrespective of climatic differences between locations 20% (on average) of the15N fertilizer applied to wheat crops was unaccounted for at harvest. Most of the15N fertilizer remaining in the soil was found in the 0–30 cm layer. The most likely explanation of these differences is that wheat grown in dry environments has a greater root:shoot ratio than wheat grown in humid environments and, further, that the residue of dryland crops have higher C/N ratios. Both factors could contribute to the greater recovery of15N fertilizer in the soil in dry environments than in humid ones.  相似文献   

10.
Even though K is an essential nutrient, the response of upland rice to K fertilization under field conditions has not been adequately documented. This research was conducted to examine the influence of K fertilization on yield of upland rice (Oryza sativa L.). In the first three years, K was broadcast at rates of 0, 42, 84, 126 and 168 kg K ha–1. In the last two years K was banded at rates of 0, 25, 50, 75 and 100 kg K ha–1. The experiment was conducted on an Oxisol (Typic Haplustox) during five consecutive years. Potassium significantly increased grain yields and dry matter production but response varied from cultivar to cultivar and year to year. Drought and panicle neck blast played an important role in limiting upland rice yield response to K fertilization. Potassium application rates associated with maximum grain yield varied from 83 to 127 kg K ha–1 when K was broadcast and from 47 to 67 kg K ha–1 when K was banded. Previous broadcast K, favorable weather and blast resistant cultivars probably contributed to higher yields with K banding in the fourth and fifth growing seasons.  相似文献   

11.
A balance sheet of P, S and K was constructed for a long-term trial which investigates the effects of three rates of superphosphate (9% P, 11% S) on pasture production on border-strip irrigated land grazed with sheep. A balance sheet of the inputs and outputs of P, S and K to the trial over a 38 year period showed that of the nutrients applied in fertiliser, only 51–59% of the P and 15–31% of the S were retained in the soil. Small amounts were lost in animal products (4–19% of the applied nutrients) but major losses were attributed to runoff of P as particulate matter (dung and soil particles) during irrigation and leaching of sulphate-S during irrigation. Losses of K from the site were small and had no effect on total soil K content. The distribution of soil nutrients across the border-strips was also investigated. The results showed that the concentrations of total soil P and S and exchangeable K were significantly greater at the sides of the irrigation borders than in the main strip area of pasture. This was caused by deposition of a disproportionate amount of dung and urine (and therefore nutrients) on the levees where the sheep tended to camp. It was calculated that with increasing superphosphate rates greater amounts of P were transferred to the levees due to the increased amounts of P being recycled via the animals (as a result of increased herbage P concentration, pasture production and stocking rate).  相似文献   

12.
Nitrogen uptake from non-exchangeable NH 4 + byLolium multiflorum and availability of fertilizer NH 4 + and fertilizer NO 3 - were studied in pot experiments with three different soil types. The luvisol derived from loess released considerable amounts of non-exchangeable NH 4 + when cropped. In this soil fertilizer NH 4 + was only weakly fixed and was as available to the crop as fertilizer NO 3 - . The recovery of fertilizer NH 4 + was even higher than the recovery of fertilizer NO 3 - . In the fluvisol (alluvial soil) and in the cambisol (brown earth from basalt) N recovery was higher from NO 3 - fertilizer than from NH 4 + fertilizer. In these soils NH 4 + fertilizer was strongly fixed by 2:1 clay minerals and thus less available to the grass. Particularly in the basaltic soil the content of non-exchangeable NH 4 + was low and so was the release of nonexchangeable NH 4 + . At the same time this soil showed the strongest fixation of fertilizer NH 4 + . Release and refixation of fertilizer NH 4 + in the loess soil appears to be an important feature of this soil type with a beneficial effect on soil nitrogen turnover and availability.  相似文献   

13.
Not much is known about the response of lowland rice to K fertilization under Brazilian conditions. A field experiment was conducted during four consecutive years to determine the response of three lowland rice (Oryza sativa L.) cultivars to K fertilization on a Low Humic Gley soil. In the first two years, K was broadcast at rates of 0, 42, 84, 126, and 168 kg K ha–1. In the last two years K rates were reduced to 0, 25, 50, 75, and 100 kg K ha–1 and applied in a band. Potassium significantly (P < 0.01) increased grain yields but the response varied from cultivar to cultivar and year to year. Yield responses to K fertilization were superimposed on a general trend of increasing grain yields across the four growing seasons. Mean grain yields increased 14.3% with broadcast application of K in the first two years and 10.4% with banded application of K in the last two years when compared to the control treatments. Extractable soil K increased with K application rate and decreased with soil depth. Potassium was rapidly removed from the soil and yearly broadcast or banded application of K can be expected to result in a significant increase in grain yield of lowland rice in these soils.  相似文献   

14.
Brazil has approximately 30 million hectares of lowland areas, known locally as Varzea, but very little is known about their fertility and crop production potential. A field experiment was conducted for three consecutive years to evaluate response of lowland rice (Oryza sativa L.) grown in rotation with common bean (Phaseolus vulgaris L.) on a Varzea (low, Humic Gley) soil. Rice was grown at low (no fertilizer), medium (100 kg N ha–1, 44 kg P ha–1, 50 kg K ha–1, 40 kg FTE-BR 12 ha–1), and high (200 kg N ha–1, 88 kg P ha–1, 100 kg K ha–1, 80 kg FTE-BR 12 ha–1 fritted trace element-Brazil 12 as a source of micronutrients) soil fertility levels. Green manure with medium fertility was also included as an additional treatment. Average dry matter and grain yields of rice and common bean were significantly (P < 0.01) increased with increasing fertilization. Across the three years, rice yield was 4327 kg ha–1 at low fertility, 5523 kg ha–1 at medium fertility, 5465 kg ha–1 at high fertility, and 6332 kg ha–1 at medium fertility with green manure treatment. Similarly, average common bean yield was 294 kg ha–1 at low soil fertility, 663 kg ha–1 at medium soil fertility, 851 kg ha–1 at high fertility, and 823 kg ha–1 at medium fertility with green manure treatment. Significant differences in nutrient uptake in bean were observed for fertility, year, and their interactions; however, these factors were invariably nonsignificant in rice.  相似文献   

15.
在驻马店新坡村进行了小麦-玉米轮作制下的控释尿素与普通尿素掺混比例定位试验研究。结果表明:控释尿素与普通尿素掺混处理的小麦、玉米产量均以70%控释尿素+30%普通尿素处理最好,第1年和第2年的小麦产量分别比100%普通尿素处理增产17.0%和21.1%,玉米产量分别比普通尿素处理增产16.2%和16.2%;氮肥利用率与产量结果一致,均以70%控释尿素+30%普通尿素处理最高,分别为53.9%和54.5%。  相似文献   

16.
The response of crops to added P in Vertisols is generally less predictable than in other soil types under similar agroclimatic conditions. Very few studies have considered the residual effects of P while studying responses to fresh P applications. Field experiments were conducted for three years to study the response of sorghum to fertilizer P applied at 0, 10, 20 and 40 kg P ha–1, and its residual value in a Vertisol, very low in extractable P (0.4 mg P kg–1 soil), at the ICRISAT Center, Patancheru (near Hyderbad), India. In order to compare the response to fresh and residual P directly in each season, a split-plot design was adopted. One crop of sorghum (cv CSH6) was grown each year during the rainy season (June-September).The phenology of the sorghum crop and its harvest index were greatly affected by P application. The days to 50% flowering and physiological maturity were significantly reduced by P application as well as by the residues of fertilizer P applied in the previous season. In the first year of the experiment, sorghum grain yield increased from 0.14 t (no P added) to 3.48 t ha–1 with P added at the rate of 40 kg P ha–1. Phosphorus applied in the previous year was 58% as effective as fresh P but P applied two years earlier was only 18% as effective as fresh P.  相似文献   

17.
Experiment with different split applications of 40 kg N ha–1 of urea (U) at transplanting:30 days after transplanting:40 days before crop maturity with different proportions of 50:25:25, 25:50:25 and 0:50:50 splits, with and without Azolla, carried out for two consecutive seasons, revealed that fresh weight (FW), N2-fixation measured by acetylene reduction activity (ARA) and N yield of newly introducedAzolla caroliniana were higher with 0:50:50 treatment followed by 25:50:25 and 50:25:25.Azolla was unincorporated and left for self decomposition. The crop yield (grain yield, straw yield) and crop N uptake data indicated that among the no Azolla treatments, the use of 50:25:25 split resulted in highest crop yield and crop N uptake followed by 25:50:25 and 0:50:50 treatments, while these parameters recorded maximum value with 25:50:25 split in combination with Azolla followed by 50:25:25 and 0:50:50 treatments. The use of Azolla increased crop yield and crop N uptake significantly over no Azolla treatments.  相似文献   

18.
The relationships between (i) soil test phosphorus (P) (Colwell sodium bicarbonate procedure) and the level of P applied (from 0 to 1000 kg total P ha–1) (relationship 1), and (ii) yield and soil-test P (relationship 2, the soil P test calibration), were measured in two field experiments on very sandy, P-leaching soils in the high rainfall (> 800 mm annual average) areas of south-western Australia. The soils were humic sandy podzols, or haplohumods, comprising 97% sand (20 to 2000 m). The experiments started in April 1984 and were terminated at the end of 1990. Soil-test P, measured on soil samples collected to 5, 10 and 25 cm depth each January in the years after P application, was related to yields of dried clover (Trifolium subterraneum) herbage measured later in each year. The four P fertilizers studied were single superphosphate, coastal superphosphate (made by adding, just before granulation, extra rock phosphate together with elemental sulphur while manufacturing single superphosphate), apatite rock phosphate, and Calciphos.Relationship (1) was adequately described by a linear equation (R2 > 0.80, most being > 0.90). The slope coefficient estimates the extractability of P from the soil by the Colwell procedure, and is called extractability. Relationship (2) was adequately described by the Mitscherlich equation (R2 > 0.75, most being > 0.90). For relationship (2), use of percentage of the maximum (relative) yield eliminated differences due to different maximum yields and yield responses (maximum yield minus the yield for the nil-P treatment). Soil test P ranged from about 4 to 150 g Pg–1 soil. Soil test P and extractability were generally higher for samples of the top 5 cm of the soil than the top 25 cm, and were largest for single superphosphate and lowest for apatite rock phosphate. Both extractability (relationship (1)) and the curvature coefficient of the Mitscherlich equation (relationship (2)), differed for different P fertilizers and different soil sample depths. The curvature coefficient also differed for different yield assessments (harvests) in the same or different years. Different soil P test calibrations were required for different P fertilizers, soil sample depths and harvest in the same or different years. It is concluded that soil P testing provides a crude estimate of the current P status of P-leaching soils in Western Australia.  相似文献   

19.
Soil fertility replenishment is a critical factor that many farmers in the tropical American hillsides have to cope with to increase food crop production. The effect of three planted fallow systems (Calliandra houstoniana-CAL, Indigofera zollingeriana-IND, Tithonia diversifolia-TTH) and a crop rotation (maize/beans-ROT) on soil nitrogen mineralization, organic matter and phosphorus fractions was compared to the usual practice of allowing natural regeneration of native vegetation or natural fallow management (NAT). Studies were conducted on severely degraded Colombian volcanic-ash soils, 28 months after fallow establishment, at two on-farm experimental sites (BM1 and BM2) in the Cauca Department. Tithonia diversifolia had a significantly higher contribution to exchangeable Ca, K and Mg as well as B and Zn; the order of soil nutrient contribution was TTH > CAL > IND > NAT > ROT. On the other hand, lND had significantly higher soil NO3–N at both experimental farms as compared to all the other fallow system treatments. For the readily available P fraction, CAL and ROT had significantly higher H2O–Po and resin-Pi, respectively, in the 0–5 cm soil layer; whereas TTH showed significantly higher values for both H2O–Po and resin-Pi in the 5–10 cm soil layer. Significant effects were observed on the weights of the soil organic matter fractions which decreased in the order LL (Ludox light) > LM (Ludox intermediate) > LH (Ludox heavy). Indigofera zollingeriana showed greater C, N and P in the soil organic matter fractions than all the other fallow treatments, with NAT having the lowest values. It is concluded that planted fallows can restore soil fertility more rapidly than natural fallows.  相似文献   

20.
适宜的根层磷养分供应是菜田磷肥推荐用量的基础。通过在开展多点磷肥施用试验,分析不同施肥措施对辣椒产量和磷肥农学利用率的影响。结果表明,除试验点2、试验点4和试验点8外处理间辣椒产量存在显著差异外,其他各试验点处理间辣椒产量差异不显著。与T1辣椒产量相比,T2、T3和T4辣椒产量都有所提高,但各处理间辣椒产量差异都不显著。各试验点各处理磷肥利用率由大到小依次为:处理2处理3处理4。因此,在土壤有效磷中等偏高磷水平条件下,设施辣椒菜田在施用有机肥的基础上不需要追施磷肥。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号