共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have shown previously that the Ca2+ channel beta3 subunit is capable of modulating tonic G-protein inhibition of alpha1A and alpha1B Ca2+ channels expressed in oocytes. Here we determine the modulatory effect of the Ca2+ channel beta3 subunit on M2 muscarinic receptor-activated G-protein inhibition and whether the beta3 subunit modulates the G-protein sensitivity of alpha1A and alpha1B currents equivalently. To compare the relative inhibition by muscarinic activation, we have used successive ACh applications to remove the large tonic inhibition of these channels. We show that the resulting rebound potentiation results entirely from the loss of tonic G-protein inhibition; although the currents are temporarily relieved of tonic inhibition, they are still capable of undergoing inhibition through the muscarinic pathway. Using this rebound protocol, we demonstrate that the inhibition of peak current amplitude produced by M2 receptor activation is similar for alpha1A and alpha1B calcium currents. However, the contribution of the voltage-dependent component of inhibition, characterized by reduced inhibition at very depolarized voltage steps and the relief of inhibition by depolarizing prepulses, was slightly greater for the alpha1B current than for the alpha1A current. After co-expression of the beta3 subunit, the sensitivity to M2 receptor-induced G-protein inhibition was reduced for both alpha1A and alpha1B currents; however, the reduction was significantly greater for alpha1A currents. Additionally, the difference in the voltage dependence of inhibition of alpha1A and alpha1B currents was heightened after co-expression of the Ca2+ channel beta3 subunit. Such differential modulation of sensitivity to G-protein modulation may be important for fine tuning release in neurons that contain both of these Ca2+ channels. 相似文献
3.
4.
The cardiac muscle sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor) is a ligand-gated channel that is activated by micromolar cytoplasmic Ca2+ concentrations and inactivated by millimolar cytoplasmic Ca2+ concentrations. The effects of sarcoplasmic reticulum lumenal Ca2+ on the purified release channel were examined in single channel measurements using the planar lipid bilayer method. In the presence of caffeine and nanomolar cytosolic Ca2+ concentrations, lumenal-to-cytosolic Ca2+ fluxes >/=0.25 pA activated the channel. At the maximally activating cytosolic Ca2+ concentration of 4 microM, lumenal Ca2+ fluxes of 8 pA and greater caused a decline in channel activity. Lumenal Ca2+ fluxes primarily increased channel activity by increasing the duration of mean open times. Addition of the fast Ca2+-complexing buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cytosolic side of the bilayer increased lumenal Ca2+-activated channel activities, suggesting that it lowered Ca2+ concentrations at cytosolic Ca2+-inactivating sites. Regulation of channel activities by lumenal Ca2+ could be also observed in the absence of caffeine and in the presence of 5 mM MgATP. These results suggest that lumenal Ca2+ can regulate cardiac Ca2+ release channel activity by passing through the open channel and binding to the channel's cytosolic Ca2+ activation and inactivation sites. 相似文献
5.
MC Jeziorski RM Greenberg KS Clark PA Anderson 《Canadian Metallurgical Quarterly》1998,273(35):22792-22799
Voltage-gated Ca2+ channels in vertebrates comprise at least seven molecular subtypes, each of which produces a current with distinct kinetics and pharmacology. Although several invertebrate Ca2+ channel alpha1 subunits have also been cloned, their functional characteristics remain unclear, as heterologous expression of a full-length invertebrate channel has not previously been reported. We have cloned a cDNA encoding the alpha1 subunit of a voltage-gated Ca2+ channel from the scyphozoan jellyfish Cyanea capillata, one of the earliest existing organisms to possess neural and muscle tissue. The deduced amino acid sequence of this subunit, named CyCaalpha1, is more similar to vertebrate L-type channels (alpha1S, alpha1C, and alpha1D) than to non-L-type channels (alpha1A, alpha1B, and alpha1E) or low voltage-activated channels (alpha1G). Expression of CyCaalpha1 in Xenopus oocytes produces a high voltage-activated Ca2+ current that, unlike vertebrate L-type currents, is only weakly sensitive to 1,4-dihydropyridine or phenylalkylamine Ca2+ channel blockers and is not potentiated by the agonist S(-)-BayK 8644. In addition, the channel is less permeable to Ba2+ than to Ca2+ and is more permeable to Sr2+. CyCaalpha1 thus represents an ancestral L-type alpha1 subunit with significant functional differences from mammalian L-type channels. 相似文献
6.
The Drosophila ether-à-go-go (eag) mutant is responsible for altered potassium currents in excitable tissue. These mutants exhibit spontaneous, repetitive firing of action potentials in the motor axons of larval neuromuscular junctions. The eag gene encodes a polypeptide that shares sequence similarities with several different ionic channel proteins, including voltage-gated potassium channels, an inward rectifier as well as cyclic-nucleotide-gated channels. These formal similarities in the derived primary sequences indicate that eag polypeptides might express a new type of ion channel. Here we report the expression by eag RNA in Xenopus oocytes of such a channel which incorporates properties of both voltage- and ligand-gated channels. The permeability of these eag channels to potassium and calcium is dependent on voltage and cyclic AMP. The ability to mediate potassium-outward and calcium-inward currents endows this channel with properties likely to be important in the modulation of synaptic efficiency in both central and peripheral nervous systems. 相似文献
7.
Flare and hyperalgesia after intradermal capsaicin injection in human skin. J. Neurophysiol. 80: 2801-2810, 1998. We investigated the neurovascular mechanisms that determine the flare response to intradermal capsaicin injection in humans and delineated the associated areas of mechanical and heat hyperalgesia. The flare response was monitored both visually and with infrared telethermography. The areas of mechanical and heat hyperalgesia were determined psychophysically. Thermography detected very large areas of flare. As an early event underlying the flare and before onset of the area of rubor of the skin, thermography detected the appearance of multifocal spots of increased temperature caused by dilatation of cutaneous arterioles. Repetition of capsaicin injection days apart into the same forearm induced multifocal spots of temperature elevation identical to the ones obtained in the first session, indicating dilatation of the same arterioles. Reactive hyperemia also consisted in the appearance of multifocal spots of increased temperature, which were identical to the ones reacting during the flare response, suggesting participation of the same arterioles in both events. Strips of local anesthetic placed to block cutaneous nerves prevented the spread of both the thermographic flare and associated hyperalgesia. It is inferred that the cutaneous nerve fibers responsible for the thermographic flare branch, or have coupled axons, over a long distance. The large area of flare coincided with the area of mechanical and heat hyperalgesia. Equivalence of the areas of flare and mechanical and heat hyperalgesia induced by intradermal capsaicin injection suggests that all three phenomena are the consequence of neural factors that operate peripherally. 相似文献
8.
ZH Zhang JA Johnson L Chen N El-Sherif D Mochly-Rosen M Boutjdir 《Canadian Metallurgical Quarterly》1997,80(5):720-729
We have previously shown that alpha1-adrenergic activation inhibited beta-adrenergic-stimulated L-type Ca2+ current (I(Ca)). To determine the role of protein kinase C (PKC) in this regulation, the inositol trisphosphate pathway was bypassed by direct activation of PKC with 4beta-phorbol 12-myristate 13-acetate (PMA). To minimize Ca2+-induced Ca2+ inactivation, Ba2+ current (I(Ba)) was recorded through Ca2+ channels in adult rat ventricular myocytes. We found that PMA (0.1 micromol/L) consistently inhibited basal I(Ba) by 40.5+/-7.4% and isoproterenol (ISO, 0.1 micromol/L)-stimulated I(Ba) by 48.9+/-7.8%. These inhibitory effects were not observed with the inactive phorbol ester analogue alpha-phorbol 12,13-didecanoate (0.1 micromol/L). To identify the PKC isozymes that mediate these PMA effects, we intracellularly applied peptide inhibitors of a subclass of PKC isozymes, the C2-containing cPKCs. These peptides (betaC2-2 and betaC2-4) specifically inhibit the translocation and function of C2-containing isozymes (alpha-PKC, betaI-PKC, and betaII-PKC), but not the C2-less isozymes (delta-PKC and epsilon-PKC). We first used the pseudosubstrate peptide (0.1 micromol/L in the pipette), which inhibits the catalytic activity of all the PKC isozymes, and found that PMA-induced inhibition of ISO-stimulated I(Ba) was reduced to 16.8+/-7.4% but was not affected by the scrambled pseudosubstrate peptide. The effects of PMA on basal and ISO-stimulated I(Ba) were then determined in the presence of C2-derived peptides or control peptides. When the pipette contained 0.1 micromol/L of betaC2-2 or betaC2-4, PMA-induced inhibition of basal I(Ba) was 26.1+/-4.5% and 23.6+/-2.2%, respectively. Similarly, ISO-stimulated I(Ba) was inhibited by 29.9+/-6.6% and 29.3+/-7.8% in the presence of betaC2-2 and betaC2-4, respectively. In contrast, there was no significant change in the effect of PMA in the presence of control peptides, scrambled betaC2-4, or pentalysine. Finally, PMA-induced inhibition of basal and ISO-stimulated I(Ba) was almost completely abolished in cells dialyzed with both betaC2-2 and betaC2-4. Together, these data suggest a role for C2-containing isozymes in mediating PMA-induced inhibition of L-type Ca2+ channel activity. 相似文献
9.
KM Page C Cantí GJ Stephens NS Berrow AC Dolphin 《Canadian Metallurgical Quarterly》1998,18(13):4815-4824
We have examined the basis for G-protein modulation of the neuronal voltage-dependent calcium channels (VDCCs) alpha1E and alpha1B. A novel PCR product of alpha1E was isolated from rat brain. This contained an extended 5' DNA sequence and was subcloned onto the previously cloned isoform rbEII, giving rise to alpha1Elong whose N terminus was extended by 50 amino acids. VDCC alpha1 subunit constructs were co-expressed with the accessory alpha2-delta and beta2a subunits in Xenopus oocytes and mammalian (COS-7) cells. The alpha1Elong showed biophysical properties similar to those of rbEII; however, when G-protein modulation of expressed alpha1 subunits was induced by activation of co-expressed dopamine (D2) receptors with quinpirole (100 nM) in oocytes, or by co-transfection of Gbeta1gamma2 subunits in COS-7 cells, alpha1Elong, unlike alpha1E(rbEII), was found to be G-protein-modulated, in terms of both a slowing of activation kinetics and a reduction in current amplitude. However, alpha1Elong showed less modulation than alpha1B, and substitution of the alpha1E1-50 with the corresponding region of alpha1B1-55 produced a chimera alpha1bEEEE, with G-protein modulation intermediate between alpha1Elong and alpha1B. Furthermore, deletion of the N-terminal 1-55 sequence from alpha1B produced alpha1BDeltaN1-55, which could not be modulated, thus identifying the N-terminal domain as essential for G-protein modulation. Taken together with previous studies, these results indicate that the intracellular N terminus of alpha1E1-50 and alpha1B1-55 is likely to contribute to a multicomponent site, together with the intracellular I-II loop and/or the C-terminal tail, which are involved in Gbetagamma binding and/or in subsequent modulation of channel gating. 相似文献
10.
L Fuller C Lu D McMahon E Alaudin M Jorgensen S Rau J Sisken B Jackson 《Canadian Metallurgical Quarterly》1997,8(5):1169-1172
The present study examined whether the synthetic glucocorticoid dexamethasone (DEX) can modulate voltage-gated Ca2+ channel (VGCC) activity, and as a consequence agonist-induced increases in cytosolic Ca2+, in cultured rat adrenal medullary chromaffin (RAMC) cells. Exposure to 1 microM DEX for 48 h significantly increased peak VGCC current (delta +140%). DEX treatment also significantly potentiated the increases in cytosolic Ca2+ in response to submaximal stimulatory concentrations of KCl (delta +64%) and nicotine (delta +32%). The Ca2+ channel agonist BAY K-8644 increased both VGCC current (delta +109%) and potentiated the KCl-stimulated increase in cytosolic Ca2+ (delta +35%) to a comparable extent to that seen with DEX. These data suggest that DEX treatment increases VGCC activity, and that this increased Ca2+ influx leads to potentiation of agonist-induced increases in cytosolic Ca2+ in RAMC cells. 相似文献
11.
12.
Whole-cell voltage-gated currents were recorded from bipolar cells in the zebrafish retinal slice. Two physiological populations of bipolar cells were identified. In the first, depolarizing voltage steps elicited a rapidly activating A-current that reached peak amplitude < or = 5 ms of step onset. IA was antagonized by external tetraethylammonium or 4-aminopyridine, and by intracellular caesium. The second population expressed a delayed rectifying potassium current (IK) that reached peak amplitude > or = 10 ms after step onset and did not inactivate. IK was antagonized by internal caesium and external tetraethylammonium. Bipolar cells expressing IK also expressed a time-dependent h-current at membrane potentials < -50 mV. Ih was sensitive to external caesium and barium, and was also reduced by Na+-free Ringer. In both groups, a calcium current (ICa) and a calcium-dependent potassium current (IK(Ca)) were identified. Depolarizing voltage steps > -50 mV activated ICa, which reached peak amplitude between -20 and -10 mV. ICa was eliminated in Ca+2-free Ringer and blocked by cadmium and cobalt, but not tetrodotoxin. In most cells, Ica was transient, activating rapidly at -50 mV. This current was antagonized by nickel. The remaining bipolar cells expressed a nifedipine-sensitive sustained current that activated between -40 and -30 mV, with both slower kinetics and smaller amplitude than transient ICa. IK(Ca) was elicited by membrane depolarizations > -20 mV. Bipolar cells in the zebrafish retinal slice preparation express an array of voltage-gated currents which contribute to non-linear I-V characteristics. The zebrafish retinal slice preparation is well-suited to patch clamp analyses of membrane mechanisms and provides a suitable model for studying genetic defects in visual system development. 相似文献
13.
B Neuhuber U Gerster J Mitterdorfer H Glossmann BE Flucher 《Canadian Metallurgical Quarterly》1998,273(15):9110-9118
To study the interactions of the alpha1S subunit of the skeletal muscle L-type Ca2+ channel with the skeletal beta1a and the cardiac beta2a, these subunits were expressed alone or in combination in tsA201 cells. Immunofluorescence- and green fluorescent protein-labeling showed that, when expressed alone, beta1a was diffusely distributed throughout the cytoplasm, beta2a was localized in the plasma membrane, and alpha1S was concentrated in a tubular/reticular membrane system, presumably the endoplasmic reticulum (ER). Upon coexpression with alpha1S, beta1a became colocalized with alpha1S in the ER. Upon coexpression with beta2a, alpha1S redistributed to the plasma membrane, where it aggregated in large clusters. Coexpression of alpha1S with beta1a but not with beta2a increased the frequency at which cells expressed L-type currents. A point mutation (alpha1S-Y366S) or deletion (alpha1S-Delta351-380) in the beta interaction domain of alpha1S blocked both translocation of beta1a to the ER and beta2a-induced translocation of the alpha1S mutants to the plasma membrane. However, the point mutation did not interfere with beta1a-induced current stimulation. Thus, beta1a and beta2a are differentially distributed in tsA201 cells and upon coexpression with alpha1S, form alpha1S. beta complexes in different cellular compartments. Complex formation but not current stimulation requires the intact beta interaction domain in the I-II cytoplasmic loop of alpha1S. 相似文献
14.
S Kawano 《Canadian Metallurgical Quarterly》1998,5(6):405-416
We investigated the effects of cytosolic Mg2+ on ryanodine receptor Ca2+ release channel (RyR) of bovine cardiac sarcoplasmic reticulum incorporated into planar lipid bilayers recording single channel activities. Channels were activated by > or = 0.1 microM Ca2+ in the cis solution. At constant Ca2+, application of Mg2+ (0.1-1 mM) to cis side decreased channel activity in a concentration-dependent manner. A half maximal blocking concentration (Kd) was 35 microM and a complete block was obtained at 1 mM. In the presence of 1 mM free Mg2+ in cis solution, the relation between the channel open probability (Po) and concentration of free Ca2+ in cis solution ([Ca2+]cis) shifted to the right, indicating the competition of Mg2+ and Ca2+. Blocking effects of Mg2+ on RyR were antagonized by increasing [Ca2+]cis > or = 0.1 mM. In the presence of 1 m Mg2+ and 1 mM Ca2+ in cis solution, the channel conductance was markedly depressed to approximately 400 pS (n = 7) from 603 +/- 40 pS (mean +/- S.D., n = 22) in the absence of Mg2+, indicating the flickering block. These results show that Mg2+ causes a direct inhibition of RyR in cardiac SR and this inhibition may be mediated through two different mechanisms. A competition of Mg2+ and Ca2+ at a Ca2+ sensitive site on the RyR and a flickery block of the open channel by Mg2+. 相似文献
15.
The objective was to test the hypothesis that transient activation of the alpha1-adrenergic receptor mimics the beneficial effects of Ca2+ preconditioning on the Ca2+ paradox (Ca2+ PD) injury in rat hearts, and that the protection is mediated by protein kinase C (PKC) signaling pathway. Langendorff-perfused rat hearts were subjected to the Ca2+ PD (10 min of Ca2+ depletion followed by 10 min of Ca2+ repletion). The effects of alpha1-adrenergic receptor activation and other interventions on functional, biochemical and pathological changes were assessed. In hearts pretreated with 50 micromol/l phenylephrine, left ventricular end-diastolic pressure and coronary flow were significantly preserved after Ca2+ PD; furthermore, peak loss of lactate dehydrogenase was significantly decreased while ATP was significantly preserved. A remarkable preservation of cell structure was observed in phenylephrine-treated hearts in contrast to non-treated Ca2+ PD hearts. However, pre-conditioning elicited by phenylephrine caused only a mild improvement in left ventricular developed pressure (LVDP) as opposed to its impressive recovery of left ventricular end-diastolic pressure (LVEDP), heart rate (HR), or coronary flow (CF). The salutary effects of phenylephrine on the Ca2+ PD injury were almost similar to those observed in hearts which underwent Ca2+ pre-conditioning (CPC) or were pretreated with 1-stearoyl-2-arachidonoyl-glycerol (SAG), a potent PKC activator. In phenylephrine pretreated hearts, PKC isoform-alpha was localized in the sarcolemma and nucleus, while PKC-delta and PKC-epsilon were localized in the cell membrane, and intercalated disk respectively. Prazosin, a specific alpha1-adrenergic receptor antagonist completely abolished the beneficial effects of phenylephrine on the Ca2+ PD and blocked translocation of PKC isoforms. In addition, prazosin (1 micromol/l) also reversed salutary effects of CPC. Moreover, the beta-adrenergic antagonist, propranolol, had no effect on the protection provided by phenylephrine against the Ca2+ PD injury. This study suggests that the activation of the alpha1-adrenergic receptor confers protection against the lethal injury of the Ca2+ PD via PKC-mediated signaling pathways. The protection is shared by stimuli common with calcium pre-conditioning. 相似文献
16.
NC McNaughton MJ Leach AH Hainsworth AD Randall 《Canadian Metallurgical Quarterly》1997,36(11-12):1795-1798
Human N-type Ca2+ channels were rapidly and reversibly inhibited by 5-100 microM BW619C89 (IC50 = 16.4 microM at Vtest = + 10 mV and Vhold = - 90 mV). In the presence of 20 microM BW619C89, activation kinetics were significantly faster. The degree of inhibition observed was affected by both test and holding potential, indicating state-dependent interactions with the N-type Ca2+ channel. 相似文献
17.
The C terminal of cardiac troponin C (TnC) has two Ca2+-Mg2+ sites which exhibit approximately 20-fold higher Ca2+ affinity than the two C-terminal Ca2+ specific sites in calmodulin (CaM). Substitution of the third EF-hand of TnC for the corresponding EF-hand of CaM produced a mutant (CaM[3TnC]) with a 10-fold higher C-terminal Ca2+ and Mg2+ affinity. Substitution of loop 3 of TnC for loop 3 of CaM produced a mutant (CaM[loop3TnC]) with a 10-fold faster Ca2+ on rate and a 5-fold faster Ca2+ off rate than CaM. A mutant CaM (CaM[loop3X, Z]) which contained the identical coordinating amino acids and X and Z acid pairs of TnC loop 3 had a 3-fold higher C-terminal Ca2+ affinity without the increased Ca2+ exchange rates exhibited by CaM[loop3TnC]. Thus, loop factors other than the acid pairs must be responsible for the rapid Ca2+ exchange rates of CaM[loop3TnC]. Helix 6 and helix 5 in the third EF-hand of TnC support the rapid Ca2+ on rate of TnC's loop 3 and produce an approximately 4-fold reduction in its Ca2+ off rate, explaining the high Ca2+ affinity of the third EF-hand of TnC. Exchanging loop 3 or helix 5 of TnC into CaM increased the Mg2+ affinity by decreasing the Mg2+ off rate. Our results are consistent with the high Ca2+ and Mg2+ affinity of the third EF-hand of TnC resulting from the two (X and Z) acid pairs in loop 3, coupled with the greater hydrophobicity of helix 6 and helix 5 compared to that of the third EF-hand of CaM. 相似文献
18.
Syntrophins are peripheral membrane proteins which have been found associated with dystrophin, the protein product of the Duchenne muscular dystrophy gene locus. Mouse alpha1 syntrophin binds the COOH-terminal domain of dystrophin, and calmodulin inhibits this interaction in a Ca2+-dependent fashion. Where calmodulin binds to syntrophin was investigated by constructing fusion proteins containing different regions of syntrophin's sequence. Syntrophin contains at least two regions which bind calmodulin in different ways. The COOH-terminal 24 residues contain a Ca2+-calmodulin binding site, named CBS-C, which binds calmodulin with an apparent affinity of 18 nM and which is highly conserved in all syntrophins. The amino-terminal 174 residue section of syntrophin contains other calmodulin binding, and binding occurs in either the presence or absence of Ca2+ with an apparent affinity of 100 nM. Syntrophin was shown to bind Ca2+ at two or more sites residing in the amino-terminal 274 residues, and Ca2+ binding to syntrophin affects calmodulin binding at high concentrations of syntrophin. Syntrophin A (residues 4-274) is predominantly a dimer in EGTA. A model of syntrophin's complex interactions with itself (i.e., oligomerization), calmodulin, and Ca2+ is presented. 相似文献
19.
20.
The effects of alpha1-adrenoceptor stimulation on intracellular Ca2+ transients, contractility and L-type Ca2+ current (ICa,L) were studied in single cells isolated from ventricles of guinea-pig hearts. The aim of our study was to elucidate the mechanisms of the positive inotropic effect of alpha1-adrenergic stimulation by focussing on the role of protein kinase C (PKC). Phenylephrine, an alpha1-adrenergic agonist, at concentrations of 50-100 microM elicited a biphasic inotropic response: a transient negative inotropic response (22.9+/-6.0% of control) followed by a sustained positive inotropic response (61.0+/-8.4%, mean+/-SE, n=12). The Ca2+ transient decreased by 10.2+/-3.9% during the negative inotropic phase, while it increased by 67.7+/-10% (n=12) during the positive inotropic phase. These effects were inhibited by prazosin (1 microM), a alpha1-adrenergic antagonist. Phenylephrine increased the ICa,L by 60.8+/-21% (n=5) during the positive inotropic phase. To determine whether activation of PKC is responsible for the increases in Ca2+ transients, contractile amplitude and ICa,L during alpha1-adrenoceptor stimulation, we tested the effects of 4beta-phorbol 12-myristate 13-acetate (PMA), a PKC activator, and of bisindolylmaleimide I (GF109203X) and staurosporine, both of which are PKC inhibitors. PMA mimicked phenylephrine's effects on Ca2+ transients, contractile amplitude and ICa,L. PMA (100 nM) increased the Ca2+ transient, contractile amplitude and ICa,L by 131+/-17%, 137+/-25% (n=8), and 81.1+/-26% (n=5), respectively. Prior exposure to GF109203X (1 microM) or staurosporine (10 nM) prevented the phenylephrine-induced increases in Ca2+ transients, contractile amplitude and ICa,L. Our study suggests that during alpha1-adrenoceptor stimulation increase in ICa,L via PKC causes an increase in Ca2+ transients and thereby in the contractile force of the ventricular myocytes. 相似文献