首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homogeneous mercury oxidation mechanisms described by Niksa and Qiu, and three theoretical mercury oxidation reaction rate constants developed by Wilcox were evaluated for their predictions of the extent of mercury oxidation under coal combustion conditions. Predictions were compared to results from bench-scale experiments to determine whether such models were suitable for predicting measured levels of homogeneous mercury oxidation. Experiments considered different flue gas compositions (O2, Cl, NO, and SO2) and quench rates to provide a broad range of conditions for analysis. Regardless of the mechanism chosen, most mercury oxidation was predicted to occur at temperatures below 900 K. The Niksa mechanism predicted Hg oxidation to occur only in systems that were close to isothermal at temperatures above 900 K followed by a rapid gas quench. This mechanism provided the best agreement with the experimental data of Sliger. The Qiu mechanism predicted Hg oxidation in several experimental systems and conditions fairly accurately although it did not provide the best agreement in all cases. Qiu mechanism predictions for the experimental system at the University of Connecticut operating at an equivalence ratio of 0.9 in the presence of HCl/Cl2 and also SO2 were within the bounds of experimental uncertainty. Additionally, for an experimental dataset obtained from the University of Utah for quench rates of 210 and 440 K/s in the presence of HCI, the Qiu model predicted the experimental observations with a high degree of accuracy. The effects of flue gas composition and quench on Hg oxidation are qualitatively represented by the Qiu mechanism suggesting a relative robustness of the model, although there is still need to refine rate constants to achieve greater accuracy. The Wilcox rate constants when substituted in the Qiu mechanism predicted near-complete oxidation of Hg irrespective of HCl concentrations in systems that involve flue gas quench below temperatures of 450 K.  相似文献   

2.
Catalytic conversion of elemental mercury (Hg(0)) to its oxidized form has been considered as an effective way to enhance mercury removal from coal-fired power plants. In order to make good use of the existing selective catalytic reduction of NO(x) (SCR) catalysts as a cobenefit of Hg(0) conversion at lower level HCl in flue gas, various catalysts supported on titanium dioxide (TiO(2)) and commercial SCR catalysts were investigated at various cases. Among the tested catalysts, ruthenium oxides (RuO(2)) not only showed rather high catalytic activity on Hg(0) oxidation by itself, but also appeared to be well cooperative with the commercial SCR catalyst for Hg(0) conversion. In addition, the modified SCR catalyst with RuO(2) displayed an excellent tolerance to SO(2) and ammonia without any distinct negative effects on NO(x) reduction and SO(2) conversion. The demanded HCl concentration for Hg(0) oxidation can be reduced dramatically, and Hg(0) oxidation efficiency over RuO(2) doped SCR catalyst was over 90% even at about 5 ppm HCl in the simulated gases. Ru modified SCR catalyst shows a promising prospect for the cobenefit of mercury emission control.  相似文献   

3.
Gas-phase reactions between elemental mercury and chlorine are a possible pathway to producing oxidized mercury species such as mercuric chloride in combustion systems. This study examines the effect of the chemistry of a commonly used sample conditioning system on apparent and actual levels of mercury oxidation in a methane-fired, 0.3 kW, quartz-lined reactor in which gas composition (HCl, Cl2, NOx, SO2) and quench rate were varied. The sample conditioning system included two impingers in parallel: one containing an aqueous solution of KCl to trap HgCl2, and one containing an aqueous solution of SnCl2 to reduce HgCl2 to elemental mercury (Hg0). Gas-phase concentrations of Cl2 as low as 1.5 ppmv were sufficient to oxidize a significant fraction of the elemental mercury in the KCl impinger via the hypochlorite ion. Furthermore, these low, but interfering levels of Cl2 appeared to persist in flue gases from several doped rapidly mixed flames with varied post flame temperature quench rates. The addition of 0.5 wt% sodium thiosulfate to the KCl solution completely prevented the oxidation from occurring in the impinger. The addition of thiosulfate did not inhibit the KCl impinger's ability to capture HgCl2. The effectiveness of the thiosulfate was unchanged by NO or SO2. These results bring into question laboratory scale experimental data on mercury oxidation where wet chemistry was used to partition metallic and oxidized mercury without the presence of sufficient levels of SO2.  相似文献   

4.
In the temperature range of 300-500 degrees C, solid nanocrystalline oxides react nearly stoichiometrically with numerous halocarbons, sulfur, and organophosphorus compounds. In some cases, the reaction efficiencies can be improved by the presence of a small amount of transition-metal oxide as catalyst; for example, Fe2O3 on CaO and mobile intermediate species such as FeCl3 or Fe(SO3)x are important in the catalytic process. Herein, a series of environmentally problematic compounds are discussed, including CCl4, COS, CS2, C2Cl4, CHCl3, CH2Cl2, CH3Cl, and (CH3O)2P(O)CH3. Nanocrystals of CaO coated with a thin layer of Fe2O3 (or other transition metals) =[Fe2O3]CaO, or intimately mixed =Fe2O3/CaO were compared with pure CaO. It was found that (a) the presence of a small amount of surface [Fe2O3] or other transition-metal oxide can have a marked effect on the destructive adsorption activity, (b) for some reagents, such as CCl4, C2Cl4, SO2 and others, the nanocrystalline CaO can react in stoichiometric amounts, especially if a transition-metal oxide catalyst is present, (c) although the reaction with dimethylmethylphosphonate is surface-limited, the nanocrystalline calcium oxide performed well and in high capacity, (d) nanocrystalline calcium oxide exhibits near stoichiometric activitywith several interesting sulfur-containing compounds, such as COS and CS2, (e) unfortunately, most fluorocarbons were not destructively adsorbed at 500 degrees C under the conditions employed; however, some of these can be effectively mineralized over the calcium oxide at higher temperatures. These compounds include C2F6, C3F6, C2ClF3, and CHF3, and (f) upon reaction, surface areas decreased considerably, from about 100 to about 10 m2/g. The results of these experiments further demonstrate that, with the proper choice of catalytic material, some solid-gas reactions can be engineered to be rapid and essentially stoichiometric.  相似文献   

5.
SiO2/V2O5/TiO2 catalysts were synthesized for removing elemental mercury (Hg0) from simulated coal-combustion flue gas. Experiments were carried out in fixed-bed reactors using both pellet and powder catalysts. In contrast to the SiO2-TiO2 composites developed in previous studies, the V2O5 based catalysts do not need ultraviolet light activation and have higher Hg0 oxidation efficiencies. For Hg0 removal by SiO2-V2O5 catalysts, the optimal V2O5 loading was found between 5 and 8%, which may correspond to a maximum coverage of polymeric vanadates on the catalyst surface. Hg0 oxidation follows an Eley-Rideal mechanism where HCI, NO, and NO2 are first adsorbed on the V2O5 active sites and then react with gas-phase Hg0. HCI, NO, and NO2 promote Hg oxidation, while SO2 has an insignificant effect and water vapor inhibits Hgo oxidation. The SiO2-TiO2-V2O5 catalysts exhibit greater Hg0 oxidation efficiencies than SiO2-V2O5, may be because the V-O-Ti bonds are more active than the V-O-Si bonds. This superior oxidation capability is advantageous to power plants equipped with wet-scrubbers where oxidized Hg can be easily captured. The findings in this work revealed the importance of optimizing the composition and microstructures of SCR (selective catalytic reduction) catalysts for Hg0 oxidation in coal-combustion flue gas.  相似文献   

6.
The soot combustion with NO(x) and/or O(2) on potassium-supported Mg-Al hydrotalcite mixed oxides under tight contact condition was studied using temperature-programmed oxidation (TPO), isothermal reaction and in situ FTIR techniques. The presence of NO(x) in O(2) favors the soot combustion at lower temperatures (<300 °C). However, a little suppression was observed at higher temperatures (>300 °C), which was accompanied by a substantial NO(x) reduction. The ketene (C═C═O) and isocyanate (NCO(-)) species were determined as the reaction intermediates. In NO(x) + O(2), NO(2) directly interacts with the free carbon sites (C═C*) through two parallel reactions: (1) NO(2) + C═C* → C═C═O + NO; (2) NO(2) + C═C* → NCO(-) + CO(2). The two reactions can proceed easily, which accounts for the promotion effect of NO(x) on soot combustion at lower temperatures. The further oxidation of NCO(-) by NO(2) or O(2) is responsible for the simultaneous reduction of NO(x). However, the reactions between NO(2) and C═C* are limited by the amount of free carbon sites, which can be provided by the oxidation of soot by O(2) at higher temperatures. The interaction of NO(x) and catalyst results in the formation of nitrates and nitrites, which poisoned the active K sites.  相似文献   

7.
Bromine gas was evaluated for converting elemental mercury (Hg0) to oxidized mercury, a form that can readily be captured by the existing air pollution control device. The gas-phase oxidation rates of Hg0 by Br2 decreased with increasing temperatures. SO2, CO, HCl, and H2O had insignificant effect, while NO exhibited a reverse course of effect on the Hg0 oxidation: promotion at low NO concentrations and inhibition at high NO concentrations. A reaction mechanism involving the formation of van der Waals clusters is proposed to accountfor NO's reverse effect. The apparent gas-phase oxidation rate constant, obtained under conditions simulating a flue gas without flyash, was 3.61 x 10(-17) cm3 x molecule(-1) x s(-1) at 410 K corresponding to a 50% Hg0 oxidation using 52 ppm Br2 in a reaction time of 15 s. Flyash in flue gas significantly promoted the oxidation of Hg0 by Br2, and the unburned carbon component played a major role in the promotion primarily through the rapid adsorption of Br2 which effectively removed Hg0 from the gas phase. At a typical flue gas temperature, SO2 slightly inhibited the flyash-induced Hg0 removal. Conversely, NO slightly promoted the flyash induced Hg0 removal by Br2. Norit Darco-Hg-LH and Darco-Hg powder activated carbons, which have been demonstrated in field tests, were inferred for estimating the flyash induced Hg0 oxidation by Br2. Approximately 60% of Hg0 is estimated to be oxidized with the addition of 0.4 ppm of gaseous Br2 into full scale power plant flue gas.  相似文献   

8.
The catalytic inactivation of Escherichia coli in water by a cerium (Ce)-promoted silver-loaded aluminum phosphate (Ag/ AlPO4) catalyst using molecular oxygen was investigated. With optimum Ce content, the Ag(Ce)/AlPO4 catalyst exhibited strong bactericidal activity. The process of decomposition of the cell wall and cell membrane was directly observed by TEM. The different morphological changes of E. coli cells treated with the Ag(Ce)/AlPO4 catalyst and those treated with Ag+ suggested that the Ag+ eluted from the catalyst surface did not play an important role during the bactericidal process. Results of DMPO spin-trapping measurements by electron spin resonance (ESR) indicated the formation of the reactive oxygen species (ROS) *OH and *O2-, which caused the considerable bactericidal activity. The formation of H2O2 acted as an important intermediate; this was confirmed by addition of catalase as the scavenger. A possible catalytic oxidation bactericidal mechanism using molecular oxygen was proposed for the Ag(Ce)/AlPO4 catalyst.  相似文献   

9.
许立信  王豹  李培杰  徐艳艳  崔平 《食品工业科技》2012,33(16):289-291,295
采用阴离子交换法(DAE)制备Au/γ-Al2O3催化剂,并利用TEM、XRD等方法对催化剂进行了表征,考察了催化剂制备条件对催化氧化葡萄糖性能的影响。实验结果表明:随着金负载量、pH和焙烧温度的增加,催化剂的活性先上升后下降。较优的催化剂制备条件为:氯金酸浓度0.5mmol/L、pH4、300℃下焙烧4h;Au/γ-Al2O3催化剂的活性达到0.366molglu/(min·gAu)。  相似文献   

10.
Direct UV photolysis of trichloroethylene (TCE) in dilute aqueous solution generated chloride ions as a major end product and several reaction intermediates, such as formic acid, di- and monochloroacetic acids, glyoxylic acid, and, to a lesser extent, mono- and dichloroacetylene, formaldehyde, dichloroacetaldehyde, and oxalic acid. Under prolonged irradiation, these byproducts underwent photolysis, and a high degree of mineralization (approximately 95%) was achieved. TCE decays through the following major pathways: (1) TCE + h nu --> ClCH=C*Cl + Cl*; (2) TCE (H2O) + h nu --> ClCH(OH)-CHCl2; (3) TCE + h nu --> HC[triple bond]CCl + Cl2; (4) TCE + h nu --> ClC[triple bond]CCl + HCl; (5) TCE + Cl* --> Cl2HC-C*Cl2. A kinetic model was developed to simulate the destruction of TCE and the formation and fate of byproducts in aqueous solution under irradiation with polychromatic light. By fitting the experimental data, the quantum yields for the four photolysis steps were predicted as phi(1) = 0.13, phi(2) = 0.1, phi(3) = 0.032, and phi(4) = 0.092, respectively. The reaction mechanism proposed for the photodegradation of TCE accounts for all intermediates that were detected. The agreement between the computed and experimental patterns of TCE and reaction products is satisfactory given the complexity of the reaction mechanism and the lack of photolytic kinetic parameters that are provided in the literature.  相似文献   

11.
Survey of catalysts for oxidation of mercury in flue gas   总被引:8,自引:0,他引:8  
Methods for removing mercury from flue gas have received increased attention because of recent limitations placed on mercury emissions from coal-fired utility boilers by the U. S. Environmental Protection Agency and various states. A promising method for mercury removal is catalytic oxidation of elemental mercury (Hg0) to oxidized mercury (Hg2+), followed by wet flue gas desulfurization (FGD). FGD cannot remove Hg0, but easily removes Hg2+ because of its solubility in water. To date, research has focused on three broad catalyst areas: selective catalytic reduction catalysts, carbon-based materials, and metals and metal oxides. We review published results for each type of catalyst and also present a discussion on the possible reaction mechanisms in each case. One of the major sources of uncertainty in understanding catalytic mercury oxidation is a lack of knowledge of the reaction mechanisms and kinetics. Thus, we propose that future research in this area should focus on two major aspects: determining the reaction mechanism and kinetics and searching for more cost-effective catalyst and support materials.  相似文献   

12.
A novel and effective system was developed for the complete treatment of NOx from flue gases. The system consisted of photocatalytic or ozone oxidation of NOx, followed by scrubbing and biological denitrification. Maximum photocatalytic oxidation of NOx was achieved while using powdered TiO2 at a catalytic loading rate of 10 g/h, relative humidity of 50%, and a space time of 10 s. The used catalyst was regenerated and reused. A total of 72% of oxidized NO was recovered as HNO3/HNO2 in the regeneration process. Stoichiometrically, 10% excess ozone was able to affect 100% oxidation of NO to NO2. Presence of SO2 adversely influenced the oxidation of NO by ozone. The scrubbing of NO was effective with distilled water. Heterotrophic denitrifiers were able to denitrify the leachate with an efficiency of 90%, using sewage (COD 450 mg/L) as electron donor. The new integrated treatment system seems to be a promising alternative for complete treatment of NOx from flue gases.  相似文献   

13.
Photocatalytic oxidation of gaseous 2-chloroethyl ethyl sulfide (2-CEES, ClCH2CH2SCH2CH3) over TiO2 illuminated with UV light and maintained at 25 or 80 degrees C in air has been investigated. 2-CEES was found to suffer progressive oxidation to yield ethylene (CH2CH2), chloroethylene (ClCHCH2), ethanol (CH3CH2OH), acetaldehyde (CH3C(O)H), chloroacetaldehyde (ClCH2C(O)H), diethyl disulfide (CH3CH2S2CH2CH3), 2-chloroethyl ethyl disulfide (ClCH2CH2S2CH2CH3), and bis(2-chloroethyl) disulfide (ClCH2CH2S2CH2CH2Cl) as the main primary intermediates, and water (H2O), carbon dioxide (CO2), sulfur dioxide (SO2), surface sulfate ions (SO4(2-)), and hydrogen chloride (HCl) as the final products. Trace concentrations of gaseous 2-chloroethanol (ClCH2CH2OH), ethanesulfonyl chloride (CH3CH2SO2Cl), ethyl thioacetate (CH3CH2SC(O)CH3), and considerable amounts of acetic acid (CH3C(O)OH), crotonaldehyde (CH3CHCHC(O)H), methyl acetate (CH3C(O)OCH3), and methyl formate (CH3OC(O)H) were also detected in the gas phase during the photooxidation conducted at 80 degrees C. Increase in temperature from 25 to 80 degrees C accelerates formation of gaseous ethanol, acetaldehyde, chloroacetaldehyde, diethyl disulfide, 2-chloroethyl ethyl disulfide, and bis(2-chloroethyl) disulfide but suppresses ethylene and chloroethylene production at initial stages of the process. Some aspects of the possible reaction mechanism leading to this wide array of intermediates and final products are discussed.  相似文献   

14.
To overcome the drawback of catalytic wet air oxidation (CWAO) with high temperature and high pressure, the catalytic activity of Mo-Zn-Al-O catalyst for degradation of cationic red GTL under room temperature and atmospheric pressure was investigated. Mo-Zn-Al-O catalyst was prepared by coprecipitation and impregnation. XRD, TG-DTG, and XPS were used to characterize the resulting sample. Central composition design using response surface methodology was employed to optimize correlation of factors on the decolorization of cationic red GTL. The results show that the optimal conditions of pH value, initial concentration of dye and catalyst dosage were found to be 4.0, 85 mg/L and 2.72 g/L, respectively, for maximum decolorization of 80.1% and TOC removal of 50.9%. Furthermore, the reaction on the Mo-Zn-Al-O catalyst and degradation mechanism of cationic red GTL was studied by Electron spin resonance (ESR) and GC-MS technique. The possible reaction mechanism was that the Mo-Zn-Al-O catalyst can efficiently react with adsorbed oxygen/H(2)O to produce ·OH and (1)O(2) and finally induce the degradation of cationic red GTL. GC-MS analysis of the degradation products indicates that cationic red GTL was initiated by the cleavage of -N ═ N- and the intermediates were further oxidized by ·OH or (1)O(2).  相似文献   

15.
A photocatalyst of oxygen-donor coordination to iron, complex of 5-sulfosalicylic acid (SSA) with ferric ion, supported on resin to cycle Fe3+/Fe2+ center under visible irradiation can effectively generate *OH radicals from H2O2, leading to degradation of organic pollutants in water. The higher turnover number was achieved by this catalyst for the degradation of model compound than those reported for the general N-donor ligands catalysts. The reversible "on/ off" switching of Fe3+/Fe2+ complexation with SSA, coupled with the phenol/phenoxyl radical conversion of the o-phenoxyl moiety of SSA, produces an ideal catalytic system that separates the Fenton reaction and the followed oxidations by *OH radicals (in water phase) from the regeneration of the catalytic species, Fe (SSA)2-, which occurs on the surface of resin. This system not only inhibits the undesired destruction of the ligands by *OH radicals, improving the stability of the catalyst, but also avoids the unnecessary decomposition of H2O2 into HO2* that occurs in the homogeneous Fenton system. Therefore, the system suggests an efficient utilization of H2O2 for degradation of organic pollutants.  相似文献   

16.
Manganese oxide was supported on mesoporous zirconia (MnO(x)/ MZIW) by wet impregnation, drying, water washing, and calcinations with manganese acetate tetrahydrate as the metal precursor for the first time and was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectra (FTIR), temperature-programmed reduction (TPR), temperature-programmed oxygen desorption (O2-TPD), and UV-vis diffuse reflectance spectra (UV-vis DRS) measurements. The catalyst was found to be highly effective for the mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) aqueous solution with ozone. The characterization studies showed that nonstoichiometrically MnO(x) was highly dispersed on mesoporous zirconia by the strong interaction of the [Mn(H2O)6]2+ complex with surface hydroxyls of the support. Moreover, the multivalence oxidation states of MnO(x) enhanced the electron transfer, causing the higher catalytic reactivity. On the basis of all information obtained under different experimental conditions, MnO(x)/MZIW enhanced the mineralization of 2,4-D by the formation of *OH radicals resulting from the catalytic decomposition of ozone.  相似文献   

17.
Manganese oxides and iron-manganese oxides supported on TiO2 were prepared by the sol-gel method and used for low-temperature selective catalytic reduction (SCR) of NO with NH3. Base on the previous study, Mn(0.4)/ TiO2 and Fe(0.1)-Mn(0.4)/TiO2 were then selected to carry out the in situ diffuse reflectance infrared transform spectroscopy (DRIFT) investigation for revealing the reaction mechanism. The DRIFT spectroscopy for the adsorption of NH3 indicated the presence of coordinated NH3 and NH4+ on both of the two catalysts. When NO was introduced, the coordinated NH3 on the catalyst surface was consumed rapidly, indicating these species could react with NO effectively. When NH3 was introduced into the sample preadsorbed with NO + O2, SCR reaction would not proceed on Mn(0.4)/TiO2. However, for Fe(0.1)-Mn(0.4)/ TiO2 the bands due to coordinated NH3 on Fe2O3 were formed. Simultaneously, the bidentate nitrates were transformed to monodentate nitrates and NH4+ was detected. And NO2 from the oxidation of NO on catalyst could react with NH4+ leading to the reduction of NO. Therefore, it was suggested that the SCR reaction on Fe(0.1)-Mn(0.4)/TiO2 could also take place in a different way from the reactions on Mn(0.4)/TiO2 proposed by other researchers. Furthermore, the SCR reaction steps for these two kinds of catalysts were proposed.  相似文献   

18.
Ferrate(VI) oxidation of weak-acid dissociable cyanides   总被引:1,自引:0,他引:1  
Cyanide is commonly found in electroplating, mining, coal gasification, and petroleum refining effluents, which require treatment before being discharged. Cyanide in effluents exists either as free cyanide or as a metal complex. The kinetics of the oxidation of weak-acid dissociable cyanides by an environmentally friendly oxidant, ferrate(VI) (Fe(VI)O4(2-), Fe(VI)), were studied as a function of pH (9.1-10.5) and temperature (15-45 degrees C) using a stopped-flow technique. The weak-acid dissociable cyanides were Cd(CN)4(2-) and Ni(CN)4(2-), and the rate-laws for the oxidation may be -d[Fe(VI)]/dt = k[Fe(VI)][M(CN)4(2-)]n where n = 0.5 and 1 for Cd(CN)4(2-) and Ni(CN)4(2-), respectively. The rates decreased with increasing pH and were mostly related to a decrease in concentration of the reactive protonated Fe(VI) species, HFeO4(-). The stoichiometries with Fe(VI) were determined to be: 4HFeO4(-) + M(CN)4(2-) + 6H2O --> 4Fe(OH)3 + M(2+) + 4NCO(-) + O2 + 4OH(-). Mechanisms are proposed that agree with the observed reaction rate-laws and stoichiometries of the oxidation of weak-acid dissociable cyanides by Fe(VI). Results indicate that Fe(VI) is effective in removing cyanide in coke oven plant effluent, where organics are also present.  相似文献   

19.
Anthropogenic sources release into the troposphere a wide range of volatile organic compounds (VOCs) including aromatic hydrocarbons, whose major sources are believed to be combustion and the evaporation of fossil fuels. An important question is whether there are other sources of aromatics in air. We report here the formation of p-cymene [1-methyl-4-(1-methylethyl) benzene, C6H4(CH3)(C3H7)] from the oxidation of α-pinene by OH, O3, and NO3 at 1 atm in air and 298 K at low (<5%) and high (70%) relative humidities (RH). Loss of α-pinene and the generation of p-cymene were measured using GC-MS. The fractional yields of p-cymene relative to the loss of α-pinene, Δ [p-cymeme]/Δ [α-pinene], were measured to range from (1.6±0.2)×10(-5) for the O3 reaction to (3.0±0.3)×10(-4) for the NO3 reaction in the absence of added water vapor. The yields for the OH and O3 reactions increased by a factor of 4-8 at 70% RH (uncertainties are ±2s). The highest yields at 70% RH for the OH and O3 reactions, ~15 times higher than for dry conditions, were observed if the walls of the Teflon reaction chamber had been previously exposed to H2SO4 formed from the OH oxidation of SO2. Possible mechanisms of the conversion of α-pinene to p-cymene and the potential importance in the atmosphere are discussed.  相似文献   

20.
Akaganéite (beta-FeOOH) is a major iron oxyhydroxide component in some soils, marine concretions, and acid mine drainage environments. Recently, synthetic beta-FeOOH has been found to be a promising absorbent in the treatment of metal-contaminated water. It has been recognized in previous study that akaganéite could be formed via FeCl2 chemical oxidation under specific conditions. Here we report a novel and simple method for akaganéite bioformation from FeCl2 solution oxidized by Acidithiobacillus ferrooxidans LX5 cells at 28 degrees C. After acclimation in modified 9K medium containing 0.2 M chloride, Acidithiobacillus ferrooxidans cells had great potential for oxidization of Fe2+ as FeCl2 solution, and then resulted in the formation of precipitates. The resulting precipitates were identified by powder X-ray diffraction and transmission FT-IR analyses to be akaganéite. Scanning electron microscopy images showed the akaganéite was spindle-shaped, approximately 200 nm long with an axial ratio of about 5, and the spindles had a rough surface. X-ray energy-dispersive spectral analyses indicated the chemical formula of the crystalloid akaganéite could be expressed as Fe8O8(OH)7.1(Cl)0.9 with Fe/Cl molar ratio of 8.93. The biogenetic akaganéite had a specific surface area of about 100 m2 g(-1) determined by BET method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号