首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正冷喷涂过程中,喷涂粒子被高速气流加速到较高的速度(200~1 200m/s),在固态下碰撞基体,通过粒子强烈的塑形变形沉积在基体上形成涂层。由于喷涂材料和碰撞速度不同,粒子或者从基体上反弹或者沉积于基体上,使得粒子开始沉积到基体上的速度被称为临界速度,它是冷喷涂技术的一个  相似文献   

2.
In this paper, the previously developed Eulerian model (Yu et al., J Therm Spray Technol 21(3):745-752, 2012), which could well predict the critical velocity and erosion velocity, was extended to other commonly used materials such as aluminum, iron, nickel, stainless steel 316, and Inconel718 for studying the influence of material property and establishing a generalized window of critical velocity. Results show that the deformation behavior of the used materials could be classified as coordinated deformation (copper, iron, nickel) and uncoordinated deformation patterns (aluminum, stainless steel, and Inconel718). However, it was found that the steady maximum equivalent plastic strain values at the critical velocity for each material concentrate in the extent of 2.6-3.0 regardless of deformation pattern. Dimensionless analysis shows that, the calculated critical velocity increases with the increase of material characteristic velocity, and this relationship can be primarily used to predict the critical velocity.  相似文献   

3.
基于稳定最大应变的冷喷涂粒子临界速度预测   总被引:2,自引:0,他引:2  
利用ABAQUS显式有限元分析软件,对冷喷涂铜粒子与铜基体的碰撞过程进行了欧拉法数值分析.结果表明,欧拉模型可有效模拟冷喷涂粒子碰撞变形行为,粒子撞击基体形貌的模拟结果与试验观察吻合较好.在不同碰撞速度下,最大等效塑性应变均会快速上升并达到各自稳定值,并且在290~400 m/s内稳定等效应变最大值基本不变,但随着粒子速度增加,粒子扁平化程度、与基体结合面积与金属射流量均明显增加.最后,结合金属射流形貌与等效塑性应变稳定最大值的变化规律,提出了一种冷喷涂粒子临界速度预测的新方法,计算获得了20 μm铜粒子冷喷涂临界速度约为290m/s.  相似文献   

4.
冷喷涂粒子碰撞行为和临界速度预测的数值模拟研究现状   总被引:1,自引:0,他引:1  
目前,冷喷涂技术受到越来越多国内外学者的关注。文中基于已公开发表的文献,详细讨论了冷喷涂过程中粒子碰撞行为的数值模拟和临界速度预测的研究现状。首先,简要介绍了冷喷涂、粒子结合机理和临界速度的概念。其次,总结了拉格朗日法、欧拉法和光滑粒子法等数值计算方法,并对数值计算获得的结果,例如:变形形貌、界面温度、能量变化及临界速度的预测进行了讨论。最后,探讨了冷喷涂粒子碰撞行为数值模拟中存在的问题和研究前景。  相似文献   

5.
The critical velocity is an important parameter in cold spraying, which determines the deposition efficiency under a given spray condition. The critical velocity depends not only on materials types, but also on particle temperature and oxidation conditions. In the present paper, three types of materials including copper, 316L stainless steel, Monel alloy were used to deposit coatings by cold spraying. The critical velocities of spray materials were determined using a novel measurement method. The oxygen content in the three powders was changed by isothermal oxidation at ambient atmosphere. The effect of oxygen content on the critical velocity was examined. It was found that the critical velocity in cold spray was significantly influenced by particle oxidation condition besides materials properties. The critical velocity of Cu particles changed from about 300 m/s to over 610 m/s with the change of oxygen content in powder. It is evident that the materials properties influence the critical velocity more remarkable at low oxygen content than at high oxygen content. The results suggest that with a severely oxidized powder the critical velocity tends to be dominated by oxide on the powder surface rather than materials properties.  相似文献   

6.
Numerical simulations focusing on the impacting behavior of cold sprayed particles were usually conducted by the Lagrangian formulation.However,the calculated outputs were much dependent on the meshing size owing to the excessive element distortion.Therefore,the Eulerian formulation becomes attractive,because it can avoid the extreme distortion of elements.In the present study,a copper particle impact on the same material substrate in cold spraying was simulated using the Eulerian formulation available in the ABAQUS software(Ver 6.8).The dependency of the calculated outputs on the meshing resolution were detailedly investigated.Results show that the meshing resolution not only has an effect on the shape of the deformed particle,but also it can significantly influence the maximum plastic strain and temperature under a given impact velocity.In addition,the copper particle deformation process at the critical velocity of 310 m/s shows that a jet composed of both of the particle and substrate materials can be formed and gets elongated with the impact time.  相似文献   

7.
高速电弧喷涂熔滴速度的数值模拟及试验   总被引:6,自引:4,他引:6       下载免费PDF全文
熔滴速度是电弧喷涂涂层性能的主要影响因素之一。本基于空气动力学和二相流流体力学理论建立了高速电弧喷涂雾化气流化和熔滴速度的数学模型,并进行了数值模拟;同时用试验方法测试了气流速度及Al,3Cr13熵滴在不同喷涂距离处的平均速度;数值计算结果与试验数据基本吻合。结果表明,雾化气流的速度和距喷嘴一定距离内将保持初始速度(约650m/s),然后随喷涂距离的增大而衰减,这与超音速气流通过Laval喷管后所产生的膨胀波和压缩波相互作用有关;熔滴在雾化飞行过程中经历了先加速后减速的过程,小熔滴能在较短的距离内被加速到最大速度;达到最大速度之后,小熔滴由于惯性力较小而迅速减速,而大熔滴则因较大的惯性力而减速不明显;熔滴速度的变化是由熔滴的Reynolds数决定的。Al和3Cr13熵滴的最大速度在0.3m喷涂距离之内均超过音速。  相似文献   

8.
In this study, an investigation on the impacting behavior of cold-sprayed particles using the Eulerian formulation available in ABAQUS/Explicit was conducted with typical copper material. The results show that a jet cannot be formed at an impact velocity less than about 290?m/s, while a continuous jet composed of both particle and substrate materials begins to initially form at about 290?m/s and a maximum equivalent plastic strain plateau can be found, which could be the approximate critical velocity. In addition, the jet presents discontinuities and the splashing causes the loss of material as the impact velocity exceeds the velocity extent of 290-400?m/s. Therefore, through theoretical analysis of the jet morphology, the Eulerian model could provide a prediction of the critical velocity.  相似文献   

9.
Numerical study was conducted to investigate the effect of substrate angle on particle impact velocity and normal velocity component in cold gas dynamic spraying by using three-dimensional models based on computational fluid dynamics. It was found that the substrate angle has significant effect on particle impact velocity and normal velocity component. With increasing the substrate angle, the bow shock strength becomes increasingly weak, which results in a gradual rise in particle impact velocity. The distribution of the impact velocity presents a linearly increase along the substrate centerline due to the existence of the substrate angle and the growth rate rises gradually with increasing the substrate angle. Furthermore, the normal velocity component reduces steeply with the increase in substrate angle, which may result in a sharp decrease in deposition efficiency. In addition, the study on the influence of procedure parameters showed that gas pressure, temperature, type, and particle size also play an important role in particle acceleration.  相似文献   

10.
高速电弧喷涂雾化熔滴的热传输行为   总被引:3,自引:0,他引:3  
提出了高速电弧喷涂(HVAS)雾化过程熔滴的热传输理论模型,并用一种FeAl合金进行数值分析。结果表明,雾化过程中熔滴的液态冷却速度在105~107K穝-1数量级,预示涂层将具有快速凝固组织特征;熔滴尺寸、雾化气流初始速度、熔滴过热度及喷涂距离对雾化熔滴的热传输行为均有很大的影响;在一定范围内增大雾化气流压力,增大熔滴过热度,缩短喷涂距离,可以有效地改善高速电弧喷涂层的性能。  相似文献   

11.
翟慧  熊伟  李福进  杨杰 《机床与液压》2022,50(14):141-145
针对煤气消耗数据量大,而传统机器学习模型在处理大数据时准确度不高,且数据在时间上有一定规律可循的特点,利用长短时记忆神经网络(LSTM)独特的记忆能力对煤气进行预测。为提高LSTM预测模型精度,使用经验模态分解(EMD)算法将煤气消耗数据分解为若干个相对平稳的固有模态函数和一个残差项r(t),提出基于EMD-LSTM算法的组合煤气预测模型。结果表明:与BP、EMD-BP、LSTM模型相比,该方法能够准确预测煤气消耗量,为企业节约成本和调度人员进行煤气分配提供参考。  相似文献   

12.
目的研究高压冷喷涂中,送粉气流在室温时主气流温度对冷喷涂粒子速度和温度的影响。方法利用计算流体力学软件FLUENT对冷喷涂流场进行数值模拟,分析不同送粉压差、不同喷管喉部直径的情况下,主气流温度对气体流场、粉末速度和温度的影响状况。结果送粉压差为0.1 MPa且喷管喉部直径为2 mm时,进入喷管的送粉气流流量占总气流流量的比值超过50%,此时提升主气流温度对冷喷涂粒子撞击速度和温度的提升幅度十分有限。在不改变送粉气流流量的情况下,增加喷管喉部直径可有效削弱送粉气流对粒子加速的不利影响。结论考虑送粉气流时,主气流温度对冷喷涂粉末沉积效果较弱,为了提高冷喷涂粉末沉积效率应保证顺利送粉的前提下尽可能地减小送粉气流流量,并且在设计喷管时应适当增加喷管喉部直径。  相似文献   

13.
Knowledge about the transformation temperatures is crucial in processing of steels especially in thermomechanical processes because microstructures and mechanical properties after processing are closely related to the extent and type of transformations. The experimental determination of critical temperatures is costly, and therefore, it is preferred to predict them by mathematical methods. In the current work, new thermodynamically based models were developed for computing the Ae3 and Acm temperatures in the equilibrium cooling conditions when austenite is deformed at elevated temperatures. The main advantage of the proposed models is their capability to predict the temperatures of austenite equilibrium transformations in steels with total alloying elements (Mn + Si + Ni + Cr + Mo + Cu) less than 5 wt.% and Si less than 1 wt.% under the deformation conditions just by using the chemical potential of constituents, without the need for determining the total Gibbs free energy of steel which requires many experiments and computations.  相似文献   

14.
针对大型轴类零件的高速电弧喷涂(HVAS)修复的复杂性、非线性和难以用明确数学模型表达的特点,采用模糊C均值聚类算法得出输入空间的划分和聚类中心,最后结合递推最小二乘法辨识后建参数,建立了涂层耐磨性能与喷涂工艺参数的T-S模糊模型。将该辨识算法对实测数据进行了验证,在试验范围内,误差在-8.6%~5.8%之间。结果表明,该T-S辨识模型具有较高的辨识精度及较强的泛化能力。利用所建的模糊辨识结果,分析了喷涂工艺参数对涂层耐磨性能的影响规律,并获得了涂层硬度(HRC)极大值为92.04的最佳喷涂工艺参数。  相似文献   

15.
冷喷涂Au纳米粒子在金属表面沉积过程的分子动力学模拟   总被引:2,自引:0,他引:2  
高虹  赵良举  曾丹苓  高丽娟 《金属学报》2006,42(11):1158-1164
通过对Au纳米粒子在Au基体上沉积过程的分子动力学模拟,再现了冷喷涂中Au纳米粒子在Au基体上沉积的过程以及粒子和基体表层的形貌变化;在撞击过程中,基体的局部区域有熔化现象,通过计算粒子原子进入基体表面层的数量及粒子与基体间的最终接触面积,探讨了影响喷涂粒子沉积过程的主要因素.  相似文献   

16.
目的研究冷喷涂TC4涂层的临界沉积速度及粒子温度对临界沉积速度的影响规律,并研究气体压强对沉积涂层性能的影响规律。方法理论研究上,采用有限元LS-DYNA软件中的Johnson-Cook塑性模型,选取3D164计算单元建立模型,研究粒子在不同温度和不同速度下碰撞基体后的形貌特征,确定粒子沉积临界速度。试验研究上,采用N_2作为冷喷涂驱动气体,在TC4合金上制备TC4涂层,然后采用SEM、Image J图像分析软件、硬度计等分析已沉积涂层的孔隙率和硬度等性能。结果 25、400、500、600℃温度下,计算表明10μm的TC4合金粒子在TC4基板上的临界沉积速度分别为730、465、392、361 m/s,即随粒子温度升高,粒子临界沉积速度降低,粒子沉积成涂层更容易。采用冷喷涂工艺在TC4基板上沉积TC4涂层,在N_2温度600℃、气体压力3 MPa的条件下,制备的TC4涂层厚度约1000μm,与TC4钛合金基体结合紧密,涂层孔隙率约为6.46%。结论气体温度升高,粒子临界沉积速度降低;气体压强变大,制备的涂层厚度就大且更加致密。  相似文献   

17.
In this study, an examination of cold spray particle impacting behavior using the ABAQUS/Explicit program was conducted for typical copper material (OFHC). Various combinations of calculation settings concerning element type, Arbitrary Lagrangian Eulerian adaptive meshing, contact interaction, material damage, etc., were examined with the main focus on the element excessive distortion and its effect on the resultant output. The effect of meshing size on the impact behavior was also clarified compared to the previous results obtained by using the LS-DYNA code. Some fundamental aspects on modeling of cold spray particle deformation are discussed.  相似文献   

18.
The final quality of cold-sprayed coatings can be significantly influenced by gas-substrate heat exchange, due to the dependence of the deposition efficiency of the particles on the substrate temperature distribution. In this study, the effect of the air temperature and pressure, as process parameters, and surface roughness and thickness, as substrate parameters, on the convective heat transfer coefficient of the impinging air jet was investigated. A low-pressure cold spraying unit was used to generate a compressed air jet that impinged on a flat substrate. A comprehensive mathematical model was developed and coupled with experimental data to estimate the heat transfer coefficient and the surface temperature of the substrate. The effect of the air total temperature and pressure on the heat transfer coefficient was studied. It was found that increasing the total pressure would increase the Nusselt number of the impinging air jet, while total temperature of the air jet had negligible effect on the Nusslet number. It was further found that increasing the roughness of the substrate enhanced the heat exchange between the impinging air jet and the substrate. As a result, higher surface temperatures on the rough substrate were measured. The study of the effect of the substrate thickness on the heat transfer coefficient showed that the Nusselt number that was predicted by the model was independent of the thickness of the substrate. The surface temperature profile, however, decreased in increasing radial distances from the stagnation point of the impinging jet as the thickness of the substrate increased. The results of the current study were aimed to inform on the influence and effect of substrate and process parameters on the gas-substrate heat exchange and the surface temperature of the substrate on the final quality of cold-sprayed coatings.  相似文献   

19.
Results of a study of the effect of the initial structure (granular and lamellar pearlite) of medium-carbon alloy steel 45KhN2MFA-Sh used for the production of torsion shafts on its deformability and hardenability in the process of preliminary thermomechanical treatment (PTMT) involving cold longitudinal rolling in dead rollers are presented. The metal with an initial structure of lamellar pearlite is shown to be more advantageous with respect to the hardening intensity during the rolling and the combination of mechanical properties after the PTMT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号