共查询到17条相似文献,搜索用时 62 毫秒
1.
《计算机科学与探索》2017,(1):144-154
现有的无参考图像质量评价算法多采用支持向量回归、神经网络等作为映射,训练过程需要大量样本,且泛化性能差(即在一个数据集上的训练识别效果好,在另一个数据集上可能很差),从而提出了基于稀疏表示的无参考图像质量评价算法。利用梯度幅值与拉普拉斯变换图像的联合统计信息和小波变换子带相关性组成特征字典,并对测试图像特征进行稀疏表示,最后综合稀疏系数与字典图像DMOS值获得预测质量得分。多数据库中大量实验结果表明,新算法在少量训练样本条件下即可获得优良而稳定的结果,且具有更好的泛化性能和稳定性。 相似文献
2.
3.
4.
针对基于稀疏表示的图像质量评价算法特征信息挖掘不充分,忽略稀疏特性等问题进行了研究,提出了一种基于稀疏表示与能量分解的无参考图像质量评价方法。首先利用L1范数作为稀疏惩罚项学习稀疏编码字典,并计算待评价图像的稀疏表示系数。然后对稀疏系数矩阵进行奇异值分解,并重建若干个等能量的子矩阵。最后联合max-pooling和L1范数描述稀疏系数矩阵及其子矩阵特征,L1范数刻画着稀疏性,子矩阵丰富了特征信息。实验结果表明,该算法能在无参考的情况下更好地评价图像质量,主客观分值一致性好且时间复杂度较低,具有较好的应用价值。 相似文献
5.
目的 图像的模糊度评价是客观图像质量评价的一种,主要用来衡量图像信号经过成像系统或处理算法后的降质程度,其在图像获取、传输、分析以及图像处理系统或算法评价等领域有着广泛的应用。针对目前图像模糊度评价方法没有考虑人类视觉系统的无监督学习和层次化特征提取的特性,本文将图像稀疏表示和利用概率潜在语义提取图像主题相结合,提出基于稀疏表示和概率潜在语义的图像模糊度评价算法。方法 该算法在图像稀疏表示的基础上,通过概率潜在语义方法分别提取清晰训练图像和待测图像的主题,以待测图像潜在主题与清晰图像平均潜在主题之间的相似性作为模糊度评价的依据。主要过程分为3个阶段:词典构建阶段、训练学习阶段和模糊度评价阶段。词典构建阶段的目的是通过样本学习获得图像稀疏表示的词典;训练学习阶段的目的是采用概率潜在语义的方法获得训练图像的平均主题;模糊度评价阶段的目的是通过待测图像的潜在主题与训练图像的平均潜在主题的相关系数来计算图像的模糊程度。结果 在仿真图和公共测试数据库上与典型算法的比较实验表明:本文算法在单调性、抗噪性以及视频质量专家组制定的5个评价指标上都取得了较好的效果,其中Pearson相关系数和Spearman秩相关系数分别为0.995 6和0.993 4。结论 本文根据人类视觉系统具有无监督学习和层次化特征提取的特点,以待测图像潜在主题与清晰图像平均潜在主题之间的相似性作为模糊度评价的依据,提出了一种新的基于稀疏表示和概率潜在语义的图像模糊度评价方法。实验结果表明该方法能够对图像的模糊度进行较准确的评价,并且结果与人的主观评价结果一致。 相似文献
6.
基于纹理特征的无参考图像模糊度评价方法 总被引:1,自引:0,他引:1
图像的纹理信息是人眼观察和识别物体的重要特征,根据清晰图像低通滤波前后纹理特征变化较大的特点,提出了基于纹理特征的无参考图像模糊度评价方法,对输入图像进行不同尺度的低通滤波,得到输入图像的两个副本,利用灰度共生矩阵求取两个副本图像的纹理特征变化量,以此作为图像的模糊评价依据。实验表明,该算法计算的模糊度相对于图像的模糊程度是单调的,具有良好的抗噪性,并且符合人眼视觉系统特性。 相似文献
7.
图像质量评价是对图像处理算法的优劣给出合理的评估,在很多无法获取原始参考图像的应用场合中使用无参考质量评价方法。通过对红外图像结构分析得知图像所具有的不确定性往往是模糊性,而不是随机性,因此将模糊集理论中模糊熵的概念引入到红外图像质量评价中,提出一种针对红外模糊图像的无参考质量评价方法,并从算法的有效性、一致性和准确性三个方面进行比较分析。仿真实验结果表明,该方法具有计算复杂度低、运算速度快和主客观评价一致等特点,且在总体性能上优于均方误差(MSE)和峰值信噪比(PSNR)全参考图像质量评价方法。 相似文献
8.
9.
图像的模糊问题影响人们对信息的感知、获取及图像的后续处理.无参考模糊图像质量评价是该问题的主要研究方向之一.本文分析了近20年来无参考模糊图像质量评价相关技术的发展.首先,本文结合主要数据集对图像模糊失真进行分类说明;其次,对主要的无参考模糊图像质量评价方法进行分类介绍与详细分析;随后,介绍了用来比较无参考模糊图像质量评价方法性能优劣的主要评价指标;接着,选择典型数据集及评价指标,并采用常见的无参考模糊图像质量评价方法进行性能比较;最后,对无参考模糊图像质量评价的相关技术及发展趋势进行总结与展望. 相似文献
10.
针对传统无参考模糊图像质量评价算法存在高计算复杂度的问题,通过改进经典的二次模糊处理算法,提出一种快速有效的无参考模糊图像质量评价方法。该算法基于人眼视觉系统(HVS)特性,利用局部方差选取人眼感兴趣图像块代替整体图像,并将感兴趣图像块通过低通滤波处理,构造模糊图像块,通过计算滤波前后图像块相邻像素差值变化大小获取原始整体图像的客观质量评价参数。仿真测试结果表明,该算法与传统整体图像二次模糊算法相比,皮尔逊相关系数提高0.01,与主观评价结果更为一致;运算速度提高一倍,降低了运算复杂度。 相似文献
11.
殷莹 《计算机工程与应用》2013,(23):145-148
提出了一种新的基于Tchebichef矩的无参考模糊图像质量评价方法。将模糊图像通过低通滤波得到再模糊图像;将模糊图像和再模糊图像分别进行8×8分块并计算每一图像块的Tchebichef矩;根据Tchebichef矩块的值将原始图像块分为平滑块,纹理块和边缘块,计算原始图像和再模糊图像对应块之间的Tchebichef矩向量相似度,得到三类图像块的局部平均相似度;进行融合得到原始图像的最终评价质量。实验结果表明,该方法优于其他算法,与主观评分有更好的一致性,能够更准确地评价模糊图像质量。 相似文献
12.
蔡红 《计算机工程与应用》2012,48(24):177-181
基于过完备字典的图像稀疏表示是一种新的图像表示理论,利用过完备字典的冗余性可以有效地捕捉图像的各种结构特征,从而实现图像的有效表示。采用基于过完备字典稀疏表示的方法实现SAR图像的压缩。为了得到表示图像所需要的信息,只需要存储稀疏分解的系数极其对应的坐标,实现压缩的目的。采用K-SVD算法实现过完备字典的构造。K-SVD算法是一种基于学习的算法,由于训练样本全部来自于图像本身,因此字典能够更好地逼近图像本身的结构,实现稀疏表示。仿真表明对于SAR图像的压缩,算法是有效的,并且优于基于DCT的Jpeg算法和基于小波变换的EZW和SPIHT算法。 相似文献
13.
14.
针对多聚焦图像融合中缺乏细节保护和结构不连续的不足,提出了一种基于图像分解的多聚焦图像融合算法.首先,源图像采用卡通纹理图像分解得到卡通部分和纹理部分;其次,卡通部分采用卷积稀疏表示的方法进行融合,纹理部分采用字典学习进行融合;最后,将卡通和纹理部分融合得到融合图像.实验建立在标准的融合数据集中,并与传统和最近的融合方法进行比较.实验结果证明,该算法所获得的融合结果在方差和信息熵上具有更好的表现,该算法能够有效克服多聚焦图像融合中缺乏细节保护和结构不连续的缺点,同时有更好的视觉效果. 相似文献
15.
目前大部分无参考型的图像质量评价方法都是基于图像的几何特征进行描述的,但是这种方法对于图像的边界要求较为严格,并且在实际应用中的图像的失真类型是未知的。针对这一缺点,提出一种基于梯度相关性分解的无参考图像质量评价(DGS)方法,该方法提取图像的梯度,对其进行奇异值分解作为图像的主要结构信息,以此对图像的质量进行评价。实验结果表明,DGS模型比通用的简单有效的峰值信噪比(或均方误差)模型更符合人眼视觉系统特性,能在无参考的情况下更好地评价图像质量,并与图像的主观评价值达到更准确的一致性。 相似文献
16.
17.
针对图像修复结果中存在的结构连续性和纹理清晰性较差的问题,提出了一种基于自适应相似组的图像修复算法。区别于传统的以单一图像块或固定数目图像块作为修复单元的方法,该算法根据自然图像中纹理区和结构区的不同特点,自适应地选取不同数目的相似图像块,构造自适应相似组;然后以相似组作为基本单元,学习自适应字典,并构造基于稀疏表示的图像修复模型;最后,采用Split Bregman Iteration算法高效地求解目标代价函数。实验结果表明,与基于图像块的图像修复算法和图像块组稀疏表示(GSR)算法相比,该算法在峰值信噪比(PSNR)上平均提高了0.94~4.34 dB,在结构相似性指数(SSIM)上平均提高了0.0069~0.0345,同时,修复速度分别是对比算法的2.51倍和3.32倍。 相似文献