共查询到20条相似文献,搜索用时 15 毫秒
1.
Field-scale dissolution of a multicomponent DNAPL (dense nonaqueous-phase liquid) source intentionally emplaced below the water table is evaluated in a well-characterized natural aquifer setting. The block-shaped source contained 23 kg of a trichloromethane, trichloroethene, and perchloroethene mixture homogeneously distributed at 5% saturation of pore space. Dissolution was monitored for 3 yr via down-gradient samplers (1-m fence) and occasional intra-source sampling. Although intra-source equilibrium dissolution was shown and endorsed by supporting modeling and literature lab data, less than equilibrium concentrations were predominantly monitored in the 1-m fence. This was ascribed to significant by-passing of the source by groundwater flow due to its low permeability relative to the aquifer and associated dilution of concentrations emitted from the source. Heterogeneous source dissolution occurred despite the relative homogeneity of the source and aquifer and was ascribed to dissolution fingering, which has not been previously field-demonstrated. Bulk bypass of groundwater flow around the source zone caused slow dissolution rates, with 77% of the source remaining after 3 yr and a projected longevity of approximately 25 yr. Observed dissolution fingering would have significantly increased longevity as it increasingly caused intra-source bypass of remaining DNAPL. Our dissolution interpretations were endorsed by additional data collected after 6 yr during source remediation via permanganate oxidation. 相似文献
2.
Luo J Cirpka OA Wu W Fienen MN Jardine PM Mehlhorn TL Watson DB Criddle CS Kitanidis PK 《Environmental science & technology》2005,39(21):8453-8459
A field test on in situ subsurface bioremediation of uranium(VI) is underway at the Y-12 National Security Complex in the Oak Ridge Reservation, Oak Ridge, TN. Nitrate has a high concentration at the site, which prevents U(VI) reduction, and thus must be removed. An acidic-flush strategy for nitrate removal was proposed to create a treatment zone with low levels of accessible nitrate. The subsurface at the site contains highly interconnected fractures surrounded by matrix blocks of low permeability and high porosity and is therefore subject to preferential flow and matrix diffusion. To identify the heterogeneous mass transfer properties, we performed a novel forced-gradient tracer test, which involved the addition of bromide, the displacement of nitrate, and the rebound of nitrate after completion of pumping. The simplest conceptualization consistent with the data is that the pore-space consists of a single mobile domain, as well as a fast and a slowly reacting immobile domain. The slowly reacting immobile domain (shale matrix) constitutes over 80% of the pore volume and acts as a long-term reservoir of nitrate. According to simulations, the nitrate stored in the slowly interacting immobile domain in the fast flow layer, at depths of about 12.2-13.7 m, will be reduced by an order of magnitude over a period of about a year. By contrast, the mobile domain rapidly responds to flushing, and a low average nitrate concentration can be maintained if the nitrate is removed as soon as it enters the mobile domain. A field-scale experiment in which the aquifer was flushed with acidic solution confirmed our understanding of the system. For the ongoing experiments on microbial U(VI) reduction, nitrate concentrations must be low in the mobile domain to ensure U(VI) reducing conditions. We therefore conclude that the nitrate leaching out of the immobile pore space must continuously be removed by in situ denitrification to maintain favorable conditions. 相似文献
3.
Field, experimental, and modeling study of arsenic partitioning across a redox transition in a Bangladesh aquifer 总被引:1,自引:0,他引:1
To understand redox-dependent arsenic partitioning, we performed batch sorption and desorption experiments using aquifer sands subjected to chemical and mineralogical characterization. Sands collected from the redox transition zone between reducing groundwater and oxic river water at the Meghna riverbank with HCl extractable Fe(III)/Fe ratio ranging from 0.32 to 0.74 are representative of the redox conditions of aquifers common in nature. One brown suboxic sediment displayed a partitioning coefficient (K(d)) of 7-8 L kg(-1) at equilibrium with 100 μg L(-1) As(III), while two gray reducing sediments showed K(d) of 1-2 L kg(-1). Lactate amendment to aquifer sands containing 91 mg kg(-1) P-extractable As resulted in the reduction of As and Fe with sediment Fe(III)/Fe decreasing from 0.54 to 0.44, and mobilized an equivalent of 64 mg kg(-1) As over a month. Desorption of As from nonlactate-amended sediment was negligible with little change in sediment Fe(III)/Fe. This release of As is consistent with microbial reduction of Fe(III) oxyhydroxides and the resulting decrease in the number of surface sites on Fe(III) oxyhydroxides. Arsenic partitioning (K(d)) in iron-rich, sulfur-poor aquifers with circumneutral pH is redox-dependent and can be estimated by HCl leachable sediment Fe(III)/Fe ratio with typical Fe concentrations. 相似文献
4.
5.
6.
A shallow aquifer with different redox zones overlain by intensive agricultural activity was monitored for the occurrence of 1,2-dichloropropane (DCP) to assess the fate and origin of this pollutant. DCP was detected more frequently in groundwater samples collected in aerobic and nitrate-reducing zones than those collected from iron-reducing zones. Simulated DCP concentrations for groundwater entering an iron-reducing zone were calculated from a fate and transport model that included dispersion, sorption, and hydrolysis but not degradation. Simulated concentrations were well in excess of measured values, suggesting that microbial degradation occurred in the iron-reducing zone. Microcosm experiments were conducted using aquifer samples collected from iron-reducing and aerobic zones to evaluate the potential for microbial degradation of DCP and to explain field observations. Hydrogenolysis of DCP and production of monochlorinated propanes in microcosm experiments occurred only with aquifer materials collected from the iron-reducing zone, and no dechlorination was observed in microcosms established with aquifer materials collected from the aerobic zones. Careful analyses of the DCP/1,2,2-trichloropropane ratios in groundwater indicated that older fumigant formulations were responsible for the high levels of DCP present in this aquifer. 相似文献
7.
At Idaho National Laboratory, Cr(VI) concentrations in a groundwater plume once exceeded regulatory limits in some monitoring wells but have generally decreased over time. This study used Cr stable isotope measurements to determine if part of this decrease resulted from removal of Cr(VI) via reduction to insoluble Cr(III). Although waters in the study area contain dissolved oxygen, the basalt host rock contains abundant Fe(II) and may contain reducing microenvironments or aerobic microbes that reduce Cr(VI). In some contaminated locations, (53)Cr/(52)Cr ratios are close to that of the contaminant source, indicating a lack of Cr(VI) reduction. In other locations, ratios are elevated. Part of this shift may be caused by mixing with natural background Cr(VI), which is present at low concentrations but in some locations has elevated (53)Cr/(52)Cr. Some contaminated wells have (53)Cr/(52)Cr ratios greater than the maximum attainable by mixing between the inferred contaminant and the range of natural background observed in several uncontaminated wells, suggesting that Cr(VI) reduction has occurred. Definitive proof of reduction would require additional evidence. Depth profiles of (53)Cr/(52)Cr suggest that reduction occurs immediately below the water table, where basalts are likely least weathered and most reactive, and is weak or nonexistent at greater depth. 相似文献
8.
Use of pretreatment zones and zero-valent iron for the remediation of chloroalkenes in an oxic aquifer 总被引:1,自引:0,他引:1
Pretreatment zones (PTZs) composed of sand, 10% zero-valent iron [Fe(0)]/sand, and 10% pyrite (FeS2)/sand were examined for their ability to prolong Fe(0) reactivity in above ground column reactors and a subsurface permeable reactive barrier (PRB). The test site had an acidic, oxic aquifer contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE). The 10% FeS2 and 10% Fe(0) PTZs removed dissolved oxygen and affected the pH and E(h) in the PTZ. None of the PTZs had any effect on pH or E(h) in the 100% Fe(0) zone. Nitrate and sulfate were removed more quickly in the Fe(0) zones preceded by either the 10% Fe(0) PTZ or 10% FeS2. PCE first-order degradation rate constants (k(obs)) decreased significantly (> 80%) with increasing column pore volumes regardless of the PTZ material used. k(obs) finally leveled off after approximately 1 yr of operation. The column results predict that the PRB will experience a breakthrough of PCE in 3-5 yr and illustrate the importance of incorporating temporal variations in degradation rate constants when designing PRBs. 相似文献
9.
Tuxen N de Lipthay JR Albrechtsen HJ Aamand J Bjerg PL 《Environmental science & technology》2002,36(10):2205-2212
The effects of in situ exposure to low concentrations (micrograms per liter) of herbicides on aerobic degradation of herbicides in aquifers were studied by laboratory batch experiments. Aquifer material and groundwater were collected from a point source with known exposure histories to the herbicides mecoprop (MCPP), dichlorprop, BAM, bentazone, isoproturon, and DNOC. Degradation of the phenoxy acids, mecoprop and dichlorprop, was observed in five of six sampling points from within the plume. Mecoprop was mineralized, and up to 70% was recovered as 14CO2. DNOC was degraded in only two of six sampling points from within the plume, and neither BAM, bentazone, nor isoproturon was degraded in any sampling point. A linear correlation (R2 > or = 0.83) between pre-exposure and amount of herbicide degraded within 50 days was observed for the phenoxy acids, mecoprop and dichlorprop. An improved model fit was obtained from using Monod degradation kinetics compared to zero- and first-order degradation kinetics. An exponential correlation (R2 > or = 0.85) was also found between numbers of specific phenoxy acid degrading bacteria and pre-exposure. Combination of these results strongly indicates that the low concentration exposure to phenoxy acids in the aquifer resulted in the presence of acclimated microbial communities, illustrated bythe elevated numbers of specific degraders as well as the enhanced degradation capability. The findings support application of natural attenuation to remediate aerobic aquifers contaminated by phenoxy acids from point sources. 相似文献
10.
11.
Pilot-scale demonstration of cyclodextrin as a solubility-enhancement agent for remediation of a tetrachloroethene-contaminated aquifer 总被引:1,自引:0,他引:1
The limitations associated with conventional pump and treat technology have generated interest in using enhanced in-situ flushing as an alternative for remediating source zones contaminated with immiscible liquid. This research investigates the effectiveness of cyclodextrin as a solubility-enhancement agent to enhance the removal of tetrachloroethene (PCE) from a physically isolated section of an aquifer. An important component of this project was the implementation of reagent recovery and reuse. This field experiment presented the rare opportunity, under strict regulatory guidance, to inject PCE into the surficial aquifer cell created with two sets of sheet piles driven into an underlying clay unit. The well-controlled conditions specific to this experiment allowed quantification of mass balances, which is problematic for many contaminated field sites. The fact that mass balances can be obtained provides the ability to determine remediation effectiveness with unusual accuracy for a field project. The saturated zone within the test cell was flushed with a 15 wt % cyclodextrin solution. The cyclodextrin solution increased the aqueous concentration of PCE in the extraction-well effluent to as much as 22 times the concentrations obtained during the water flush conducted prior to the complexing sugar flush (CSF). The seven pore-volume CSF removed the equivalent of approximately 33 L of PCE from the subsurface. This equates to 48% of the total initial mass, based on the volume of PCE present prior to the CSF (68.6 L). Conversely, the seven pore-volume water flush conducted prior to the CSF removed the equivalent of 2.7 L of PCE. The use of cyclodextrin as a flushing agent, especially in a recycling configuration, appears to hold promise for successful remediation of chlorinated-solvent-contaminated source zones. 相似文献
12.
Castro-Alcalá E Fernàndez-Garcia D Carrera J Bolster D 《Environmental science & technology》2012,46(6):3228-3235
Mixing is increasingly recognized as a critical process for understanding and modeling reactive transport. Yet, mixing is hard to characterize because it depends nonlinearly on concentrations. Visualization of optical tracers in the laboratory at high spatial and temporal resolution can help advance the study of mixing processes. The solute distribution is obtained by analyzing the relationship between pixel intensity and tracer concentration. The problem with such techniques is that grain borders, light fluctuations, and nonuniform brightness contribute to produce noisy images of concentrations that cannot be directly used to estimate mixing at the local scale. We present a nonparametric regression methodology to visualize local values of mixing from noisy images of optical tracers that minimizes smoothing in the direction of concentration gradients. This is achieved by weighting pixel data along concentration isolines. The methodology is used to provide a full visualization of mixing dynamics in a tracer experiment performed in a reconstructed aquifer consisting of two materials with contrasting hydraulic properties. The experiment reveals that mixing is largest at the contact area of regions with different permeability. Also, the temporal evolutions of mixing and dilution rates are significantly different. The mixing rate is more persistent than the dilution rate during tracer invasion, and the opposite is true during flushing, which helps in understanding the complementary nature of these two measures. 相似文献
13.
Ulrich GA Breit GN Cozzarelli IM Suflita JM 《Environmental science & technology》2003,37(6):1093-1099
Field and laboratory techniques were used to identify the biogeochemical factors affecting sulfate reduction in a shallow, unconsolidated alluvial aquifer contaminated with landfill leachate. Depth profiles of 35S-sulfate reduction rates in aquifer sediments were positively correlated with the concentration of dissolved sulfate. Manipulation of the sulfate concentration in samples revealed a Michaelis-Menten-like relationship with an apparent Km and Vmax of approximately 80 and 0.83 microM SO4(-2) x day(-1), respectively. The concentration of sulfate in the core of the leachate plume was well below 20 microM and coincided with very low reduction rates. Thus, the concentration and availability of this anion could limit in situ sulfate-reducing activity. Three sulfate sources were identified, including iron sulfide oxidation, barite dissolution, and advective flux of sulfate. The relative importance of these sources varied with depth in the alluvium. The relatively high concentration of dissolved sulfate at the water table is attributed to the microbial oxidation of iron sulfides in response to fluctuations of the water table. At intermediate depths, barite dissolves in undersaturated pore water containing relatively high concentrations of dissolved barium (approximately 100 microM) and low concentrations of sulfate. Dissolution is consistent with the surface texture of detrital barite grains in contact with leachate. Laboratory incubations of unamended and barite-amended aquifer slurries supported the field observation of increasing concentrations of barium in solution when sulfate reached low levels. At a deeper highly permeable interval just above the confining bottom layer of the aquifer, sulfate reduction rates were markedly higher than rates at intermediate depths. Sulfate is supplied to this deeper zone by advection of uncontaminated groundwater beneath the landfill. The measured rates of sulfate reduction in the aquifer also correlated with the abundance of accumulated iron sulfide in this zone. This suggests that the current and past distributions of sulfate-reducing activity are similar and that the supply of sulfate has been sustained at these sites. 相似文献
14.
Borchardt MA Bradbury KR Gotkowitz MB Cherry JA Parker BL 《Environmental science & technology》2007,41(18):6606-6612
15.
Importance of adsorption (hole-filling) mechanism for hydrophobic organic contaminants on an aquifer kerogen isolate 总被引:2,自引:0,他引:2
Sorption and desorption behaviors of four hydrophobic organic compounds (HOCs) were investigated for an isolated kerogen material from Borden aquifer material with total organic carbon of 0.021%. The solubility-normalized modified Freundlich equation and the combined linear and Polanyi-Dubinin (PD) equation can quite well describe the sorption or desorption isotherms. The partition component is estimated and compared using desorption data, dual-mode modeling, and the reported partition coefficients. The result suggests that the dual-mode modeling and the combined linear and PD modeling may overestimate the partitioning component. The partition component is not so important as assumed before in sorption of HOCs for the studied sorbent. As the fitted PD equation has an exponent parameter b' approaching 1, it is equivalent to the modified Freundlich equation. The small molecules 1,2-dichlorobenzene (DCB) and naphthalene (Naph) have higher adsorption volumes. The lower adsorption volumes for 1,3,5-trichlorobenzene (TCB) and phenanthrene (Phen) suggest that accessibility to the holes of kerogen by large HOC molecules is reduced. The desorption hysteresis is approximately constant for DCB when the relative aqueous concentration ranges from 0.0007 to 0.6, but for Phen is only obvious at higher relative aqueous concentrations. The varied sorption and desorption behaviors for DCB and Phen are satisfactorily explained by an adsorption/ hole filling mechanism and entrapment of some adsorbates in the kerogen matrix and by possible pore deformation mechanism at high concentrations. 相似文献
16.
Optimization of surfactant-enhanced aquifer remediation for a laboratory BTEX system under parameter uncertainty 总被引:6,自引:0,他引:6
This study develops a nonlinear chance-constrained programming (NCCP) model for optimizing surfactant-enhanced aquifer remediation (SEAR) processes. The model can not only address the parameter uncertainty, but provide a reliability level for the identified optimal remediation strategy. To solve the NCCP model, stepwise cluster analysis (SCA) is used to create a set of proxy simulators for quantifying the relationships between operating conditions (i.e., pumping rate) and probabilities of benzene levels in violation of standard. Compared to conventional parametric inference techniques, SCA is independent of prior assumptions for model forms (e.g., linear or exponential ones) and capable of reflecting complex nonlinear relationships between operating conditions and probabilities. To alleviate the computational efforts in the optimization process, the generated proxy simulators are repeatedly called by simulated annealing (SA) to test the feasibility of each potential solution. The implicit of the optimal NCCP solutions is discussed through a laboratory-scale SEAR system where porosity and intrinsic permeability are treated as stochastic parameters. It is observed that well locations, environmental standards, reliability levels and remediation durations would have significant effects on optimal SEAR strategies. By comparing the predicted benzene concentration without and with remediation actions, it is indicated that the optimal SEAR process can guarantee the benzene concentration to meet the environmental standard with a high reliability level. 相似文献
17.
18.
Decadal geochemical and isotopic trends for nitrate in a transboundary aquifer and implications for agricultural beneficial management practices 总被引:1,自引:0,他引:1
Nitrate contamination of aquifers is a global agricultural problem. Agricultural beneficial management practices (BMPs) are often promoted as a means to reduce nitrate contamination in aquifers through producer optimized management of inorganic fertilizer and animal manure inputs. In this study, decadal trends (1991-2004) in nitrate concentrations in conjunction with 3H/3He groundwater ages and nitrate stable isotopes (delta15N, delta18O) were examined to determine whether BMPs aimed at reducing aquifer-scale nitrate contamination in the transboundary Abbotsford-Sumas aquifer were effective. A general trend of increasing nitrate concentrations in young groundwater (< approximately 5 yr) suggested that voluntary BMPs were not having a positive impact in achieving groundwater quality targets. While the stable isotope data showed that animal manure was and still is the prevalent source of nitrate in the aquifer, a recent decrease in delta15N in nitrate suggests a BMP driven shift away from animal wastes toward inorganic fertilizers. The coupling of long-term monitoring of nitrate concentrations, nitrate isotopes, and 3H/3He age dating proved to be invaluable, and they should be considered in future assessments of the impact of BMPs on nutrients in groundwaters. The findings reveal that BMPs should be better linked to groundwater nutrient monitoring programs in order to more quickly identify BMP deficiencies, and to dynamically adjust nutrient loadings to help achieve water quality objectives. 相似文献
19.
Applicability of stable isotope fractionation analysis for the characterization of benzene biodegradation in a BTEX-contaminated aquifer 总被引:1,自引:0,他引:1
Fischer A Theuerkorn K Stelzer N Gehre M Thullner M Richnow HH 《Environmental science & technology》2007,41(10):3689-3696
In recent years the analysis of stable isotope fractionation has increasingly been used for characterizing and quantifying biodegradation of contaminants in aquifers. The correlation of carbon and hydrogen isotope signatures of benzene in a BTEX-contaminated aquifer located in the area of a former hydrogenation plant gave indications that biodegradation mainly occurred under anoxic conditions. This finding was consistent with the investigation of hydrogeochemical conditions within the aquifer. Furthermore, the biodegradation of benzene was calculated by changes in carbon isotope signatures using the Rayleigh-equation-streamline approach. Since contaminant concentrations can be also affected by nonisotope-fractionating abiotic processes such as dilution, volatilization, or irreversible sorption to the aquifer matrix, the Rayleigh-equation-streamline approach was adjusted for scenarios assuming that biodegradation and abiotic processes occur either consecutively or simultaneously along a groundwater flow path between contaminant source and sampling well. The results of the scenarios differed significantly, indicating that an abiotic process (typically dilution) causes a decrease in benzene concentration within the investigated aquifer transect. This comparison of results derived from the different scenarios can help to identify whether biodegradation is the predominant process for decrease in contaminant concentration. However, for a proper quantification of biodegradation, the temporal sequence between biodegradation and dilution needs to be known. The uncertainty associated with the quantification of pollutant biodegradation by the Rayleigh-equation-streamline approach increases when nonisotope-fractionating abiotic processes cause a significant decrease in contaminant concentrations. 相似文献
20.
The acidification of groundwater due to acid rain impact and the mobilization of the trace metals Ni, Be, Cd and Co was studied in a noncalcareous sandy aquifer. The groundwater is acidified down to pH 4.4 in the upper 3-4 m of the saturated zone. There is a sharp acidification front and below that the pH increases to 5.2-6.5. The acid zone groundwater contains an Al concentration of approximately 0.2 mM. These observations could be explained by a reactive transport model for downward groundwater movement based on ion exchange and equilibrium with Al(OH)3. At the acidification front, the Al3+ in groundwater exchanges for sorbed Ca2+ and Mg2+ and the coupled dissolution of Al(OH)3 causes the pH to increase. The downward migration rate of the acidification front is 3.5-5.0 cm/yr. Trace metals (Ni, Be, Cd and Co) are found to accumulate near the acidification front. Downward moving, low pH, and trace metal containing groundwater passes the acidification front, and the trace metals adsorb as the pH increases. The acidification front moves downward at a slower rate, and in this process the heavy metals are desorbed. Accordingly, the acidification front functions as a geochemical trap where trace metals accumulate, and their amount will increase with time. Different surface complexation models were explored to explain the behavior of Ni. Neither a simple iron oxide surface complexation model nor ion exchange could explain the field observations of the Ni distribution. The sediment appeared, even at low pH, to have a much stronger affinity toward Ni than predicted by the iron oxide model. The discrepancy can be accounted for in the model by increasing the Ni binding strength constant in combination with an increased number of reactive sites. 相似文献