首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In wireless sensor and actor network research, the commonly used mobility models for a mobile actor are random walk model, random waypoint mobility model, or variants thereof. For a fully connected network, the choice of mobility model for the actor is not critical because, there is at least one assured path from the sensor nodes to the actor node. But, for a sparsely connected network where information cannot propagate beyond a cluster, random movement of the actor may not be the best choice to maximize event detection and subsequent action. This paper presents static and dynamic intelligent mobility models that are based on the inherent clusters’ information of a sparsely connected network. Simulation results validate the idea behind the intelligent mobility models and provide insights into the applicability of these mobility models in different application scenarios.  相似文献   

2.
Shabir  Muhammad Yasir  Ullah  Ata  Mahmood  Zahid 《Wireless Networks》2019,25(8):5137-5150
Wireless Networks - Wireless sensor network (WSN) consists of small sized devices containing different sensors to monitor physical, environmental and medical conditions during surveillance of...  相似文献   

3.
Dimitris  George  Charalabos   《Ad hoc Networks》2006,4(4):487-498
The paper discusses two distributed actor to actor communication schemes (a single channel one and a multi-channel one) for wireless sensor actor networks (WSANs). The performance of these two schemes is evaluated through analysis and simulation. The simulation results show that the whole analysis is fairly accurate. It is further proven that the multi-channel scheme has better performance than the single channel one. The key feature of the multi-channel scheme is the separation of the single hop from the multi-hop traffic.  相似文献   

4.
Kumar  Ramesh  Amgoth  Tarachand 《Wireless Networks》2020,26(1):651-666
Wireless Networks - Wireless sensor networks are formed with very small sensor devices with limited energy and short transmission range. Sensors are randomly deployed in remote areas with harsh...  相似文献   

5.
Wireless sensor and actor networks (WSANs) have been increasingly popular for environmental monitoring applications in the last decade. While the deployment of sensor nodes enables a fine granularity of data collection, resource-rich actor nodes provide further evaluation of the information and reaction. Quality of service (QoS) and routing solutions for WSANs are challenging compared to traditional networks because of the limited node resources. WSANs also have different QoS requirements than wireless sensor networks (WSNs) since actors and sensor nodes have distinct resource constraints.In this paper, we present, LRP-QS, a lightweight routing protocol with dynamic interests and QoS support for WSANs. LRP-QS provides QoS by differentiating the rates among different types of interests with dynamic packet tagging at sensor nodes and per flow management at actor nodes. The interests, which define the types of events to observe, are distributed in the network. The weights of the interests are determined dynamically by using a nonsensitive ranking algorithm depending on the variation in the observed values of data collected in response to interests. Our simulation studies show that the proposed protocol provides a higher packet delivery ratio and a lower memory consumption than the existing state of the art protocols.  相似文献   

6.
This letter presents a localized algorithm that finds multiple node-disjoint paths in wireless sensor networks. The algorithm needs only local topology knowledge and provides automatic path restoration. We describe the algorithm, give the proof of correctness, and evaluate its performance using simulation. We conclude that the proposed algorithm is more suitable for wireless sensor networks than the existing distributed algorithms  相似文献   

7.
Current routing protocols in wireless sensor and actor networks (WSANs) shows a lack of unification for different traffic patterns because the communication for sensor to actor and that for actor to actor are designed separately. Such a design poses a challenge for interoperability between sensors and actors. With the presence of rich-resource actor nodes, we argue that to improve network lifetime, the problem transforms from reducing overall network energy consumption to reducing energy consumption of constrained sensor nodes. To reduce energy consumption of sensor nodes, especially in challenging environments with coverage holes/obstacles, we propose that actor nodes should share forwarding tasks with sensor nodes. To enable such a feature, efficient interoperability between sensors and actors is required, and thus a unified routing protocol for both sensors and actors is needed. This paper explores capabilities of directional transmission with smart antennas and rich-resource actors to design a novel unified actor-oriented directional anycast routing protocol (ADA) which supports arbitrary traffic in WSANs. The proposed routing protocol exploits actors as main routing anchors as much as possible because they have better energy and computing power compared to constraint sensor nodes. In addition, a directional anycast routing approach is also proposed to further reduce total delay and energy consumption of overall network. Through extensive experiments, we show that ADA outperforms state-of-the-art protocols in terms of packet delivery latency, network lifetime, and packet reliability. In addition, by offer fault tolerant features, ADA also performs well in challenging environments where coverage holes and obstacles are of concerns.  相似文献   

8.
V.C.  M.C.  O.B.   《Ad hoc Networks》2007,5(6):897-909
Wireless Sensor and Actor Networks (WSAN) are composed of large number of sensor nodes collaboratively observing a physical phenomenon and relatively smaller number of actor nodes, which act upon the sensed phenomenon. Due to the limited capacity of shared wireless medium and memory restrictions of the sensor nodes, channel contention and network congestion can be experienced during the operation of the network. In fact, the multi-hop nature of WSAN entangles the level of local contention and the experienced network congestion. Therefore, the unique characteristics of WSAN necessitate a comprehensive analysis of the network congestion and contention under various network conditions. In this paper, we comprehensively investigate the interactions between contention resolution and congestion control mechanisms as well as the physical layer effects in WSAN. An extensive set of simulations are performed in order to quantify the impacts of several network parameters on the overall network performance. The results of our analysis reveal that the interdependency between network parameters call for adaptive cross-layer mechanisms for efficient data delivery in WSAN.  相似文献   

9.
In the task of data routing in Internet of Things enabled volatile underwater environments, providing better transmission and maximizing network communication performance are always challenging. Many network issues such as void holes and network isolation occur because of long routing distances between nodes. Void holes usually occur around the sink because nodes die early due to the high energy consumed to forward packets sent and received from other nodes. These void holes are a major challenge for I-UWSANs and cause high end-to-end delay, data packet loss, and energy consumption. They also affect the data delivery ratio. Hence, this paper presents an energy efficient watchman based flooding algorithm to address void holes. First, the proposed technique is formally verified by the Z-Eves toolbox to ensure its validity and correctness. Second, simulation is used to evaluate the energy consumption, packet loss, packet delivery ratio, and throughput of the network. The results are compared with well-known algorithms like energy-aware scalable reliable and void-hole mitigation routing and angle based flooding. The extensive results show that the proposed algorithm performs better than the benchmark techniques.  相似文献   

10.
Wireless sensor and actor networks: research challenges   总被引:46,自引:0,他引:46  
Ian F.  Ismail H.   《Ad hoc Networks》2004,2(4):351-367
Wireless sensor and actor networks (WSANs) refer to a group of sensors and actors linked by wireless medium to perform distributed sensing and acting tasks. The realization of wireless sensor and actor networks (WSANs) needs to satisfy the requirements introduced by the coexistence of sensors and actors. In WSANs, sensors gather information about the physical world, while actors take decisions and then perform appropriate actions upon the environment, which allows a user to effectively sense and act from a distance. In order to provide effective sensing and acting, coordination mechanisms are required among sensors and actors. Moreover, to perform right and timely actions, sensor data must be valid at the time of acting. This paper explores sensor-actor and actor-actor coordination and describes research challenges for coordination and communication problems.  相似文献   

11.
Relay sensor placement in wireless sensor networks   总被引:4,自引:0,他引:4  
This paper addresses the following relay sensor placement problem: given the set of duty sensors in the plane and the upper bound of the transmission range, compute the minimum number of relay sensors such that the induced topology by all sensors is globally connected. This problem is motivated by practically considering the tradeoff among performance, lifetime, and cost when designing sensor networks. In our study, this problem is modelled by a NP-hard network optimization problem named Steiner Minimum Tree with Minimum number of Steiner Points and bounded edge length (SMT-MSP). In this paper, we propose two approximate algorithms, and conduct detailed performance analysis. The first algorithm has a performance ratio of 3 and the second has a performance ratio of 2.5. Xiuzhen Cheng is an Assistant Professor in the Department of Computer Science at the George Washington University. She received her MS and PhD degrees in Computer Science from the University of Minnesota - Twin Cities in 2000 and 2002, respectively. Her current research interests include Wireless and Mobile Computing, Sensor Networks, Wireless Security, Statistical Pattern Recognition, Approximation Algorithm Design and Analysis, and Computational Medicine. She is an editor for the International Journal on Ad Hoc and Ubiquitous Computing and the International Journal of Sensor Networks. Dr. Cheng is a member of IEEE and ACM. She received the National Science Foundation CAREER Award in 2004. Ding-Zhu Du received his M.S. degree in 1982 from Institute of Applied Mathematics, Chinese Academy of Sciences, and his Ph.D. degree in 1985 from the University of California at Santa Barbara. He worked at Mathematical Sciences Research Institutea, Berkeley in 1985-86, at MIT in 1986-87, and at Princeton University in 1990-91. He was an associate-professor/professor at Department of Computer Science and Engineering, University of Minnesota in 1991-2005, a professor at City University of Hong Kong in 1998-1999, a research professor at Institute of Applied Mathematics, Chinese Academy of Sciences in 1987-2002, and a Program Director at National Science Foundation of USA in 2002-2005. Currently, he is a professor at Department of Computer Science, University of Texas at Dallas and the Dean of Science at Xi’an Jiaotong University. His research interests include design and analysis of algorithms for combinatorial optimization problems in communication networks and bioinformatics. He has published more than 140 journal papers and 10 written books. He is the editor-in-chief of Journal of Combinatorial Optimization and book series on Network Theory and Applications. He is also in editorial boards of more than 15 journals. Lusheng Wang received his PhD degree from McMaster University in 1995. He is an associate professor at City University of Hong Kong. His research interests include networks, algorithms and Bioinformatics. He is a member of IEEE and IEEE Computer Society. Baogang Xu received his PhD degree from Shandong University in 1997. He is a professor at Nanjing Normal University. His research interests include graph theory and algorithms on graphs.  相似文献   

12.
Recent advances in electronics and wireless communication technologies have enabled the development of large-scale wireless sensor networks that consist of many low-power, low-cost, and small-size sensor nodes. Sensor networks hold the promise of facilitating large-scale and real-time data processing in complex environments. Security is critical for many sensor network applications, such as military target tracking and security monitoring. To provide security and privacy to small sensor nodes is challenging, due to the limited capabilities of sensor nodes in terms of computation, communication, memory/storage, and energy supply. In this article we survey the state of the art in research on sensor network security.  相似文献   

13.
With sensor networks on the verge of deployment, security issues pertaining to the sensor networks are in the limelight. Though the security in sensor networks share many characteristics with wireless ad hoc networks, the two fields are rapidly diverging due to the fundamental differences between the make‐up and goals of the two types of networks. Perhaps the greatest dividing difference is the energy and computational abilities. Sensor nodes are typically smaller, less powerful, and more prone to failure than nodes in an ad hoc network. These differences indicate that protocols that are valid in the context of ad‐hoc networks may not be directly applicable for sensor networks. In this paper, we survey the state of art in securing wireless sensor networks. We review several protocols that provide security in sensor networks, with an emphasis on authentication, key management and distribution, secure routing, and methods for intrusion detection. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Multimedia communication in wireless sensor networks   总被引:1,自引:0,他引:1  
The technological advances in Micro ElectroMechanical Systems (Mems) and wireless communications have enabled the realization of wireless sensor networks (Wsn) comprised of large number of low-cost, low-power, multifunctional sensor nodes. These tiny sensor nodes communicate in short distances and collaboratively work toward fulfilling the application specific objectives ofWsn. However, realization of wide range of envisionedWsn applications necessitates effective communication protocols which can address the unique challenges posed by theWsn paradigm. Since many of these envisioned applications may also involve in collecting information in the form of multimedia such as audio, image, and video; additional challenges due to the unique requirements of multimedia delivery overWsn, e.g., diverse reliability requirements, time constraints, high bandwidth demands, must be addressed as well. Thus far, vast majority of the research efforts has been focused on addressing the problems of conventional data communication inWsn. Therefore, there exists an urgent need for research on the problems of multimedia communication inWsn. In this paper, a survey of the research challenges and the current status of the literature on the multimedia communication inWsn is presented. More specifically, the multimediaWsn applications, factors influencing multimedia delivery overWsn, currently proposed solutions in application, transport, and network layers, are pointed out along with their shortcomings and open research issues.  相似文献   

15.
Mobility-based communication in wireless sensor networks   总被引:2,自引:0,他引:2  
  相似文献   

16.
Since energy is scarce in sensor nodes, wireless sensor networks aim to transmit as few packets as possible. To achieve this goal, sensor protocols often aggregate measured data from multiple sensor nodes into a single packet. In this paper, a survey of aggregation techniques and methods is given. Based on this survey, it is concluded that there are currently several dependencies between the aggregation method and the behavior of the other network layers. As a result, existing aggregation methods can often not be combined with different routing protocols. To remedy this shortcoming, the paper introduces a new ‘non-intrusive’ aggregation approach which is independent of the routing protocol. The proposed aggregation method is evaluated and compared to traditional aggregation approaches using a large-scale sensor testbed of 200 TMoteSky sensor nodes. Our experimental results indicate that existing aggregation approaches are only suited for a limited set of network scenarios. In addition, it is shown both mathematically and experimentally that our approach outperforms existing non-intrusive techniques in a wide range of scenarios.  相似文献   

17.
Access control in wireless sensor networks   总被引:2,自引:0,他引:2  
Yun  Yanchao  Yuguang   《Ad hoc Networks》2007,5(1):3-13
Nodes in a sensor network may be lost due to power exhaustion or malicious attacks. To extend the lifetime of the sensor network, new node deployment is necessary. In military scenarios, adversaries may directly deploy malicious nodes or manipulate existing nodes to introduce malicious “new” nodes through many kinds of attacks. To prevent malicious nodes from joining the sensor network, access control is required in the design of sensor network protocols. In this paper, we propose an access control protocol based on Elliptic Curve Cryptography (ECC) for sensor networks. Our access control protocol accomplishes node authentication and key establishment for new nodes. Different from conventional authentication methods based on the node identity, our access control protocol includes both the node identity and the node bootstrapping time into the authentication procedure. Hence our access control protocol cannot only identify the identity of each node but also differentiate between old nodes and new nodes. In addition, each new node can establish shared keys with its neighbors during the node authentication procedure. Compared with conventional sensor network security solutions, our access control protocol can defend against most well-recognized attacks in sensor networks, and achieve better computation and communication performance due to the more efficient algorithms based on ECC than those based on RSA.  相似文献   

18.
Two new incremental models for online anomaly detection in data streams at nodes in wireless sensor networks are discussed. These models are incremental versions of a model that uses ellipsoids to detect first, second, and higher‐ordered anomalies in arrears. The incremental versions can also be used this way but have additional capabilities offered by processing data incrementally as they arrive in time. Specifically, they can detect anomalies ‘on‐the‐fly’ in near real time. They can also be used to track temporal changes in near real‐time because of sensor drift, cyclic variation, or seasonal changes. One of the new models has a mechanism that enables graceful degradation of inputs in the distant past (fading memory). Three real datasets from single sensors in deployed environmental monitoring networks are used to illustrate various facets of the new models. Examples compare the incremental version with the previous batch and dynamic models and show that the incremental versions can detect various types of dynamic anomalies in near real time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Fault management in wireless sensor networks   总被引:2,自引:0,他引:2  
Wireless sensor networks (WSNs) have gradually emerged as one of the key growth areas for pervasive computing in the twenty-first century. Recent advances in WSN technologies have made possible the development of new wireless monitoring and environmental control applications. However, the nature of these applications and harsh environments also created significant challenges for sensor networks to maintain a high quality of service in potentially harsh environments. Therefore, efficient fault management and robust management architectures have become essential for WSNs. In this article, we address these challenges by surveying existing fault management approaches for WSNs. We divide the fault management process into three phases: fault detection, diagnosis, and recovery and classify existing approaches according to these phases. Finally, we outline future challenges for fault management in WSNs.  相似文献   

20.
Anomaly detection in wireless sensor networks is an important challenge for tasks such as fault diagnosis, intrusion detection, and monitoring applications. The algorithms developed for anomaly detection have to consider the inherent limitations of sensor networks in their design so that the energy consumption in sensor nodes is minimized and the lifetime of the network is maximized. In this survey article we analyze the state of the art in anomaly detection techniques for wireless sensor networks and discuss some open issues for research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号