共查询到19条相似文献,搜索用时 531 毫秒
1.
人脸关键特征点的自动定位 总被引:6,自引:4,他引:6
提出一种自动定位人脸关键特征点的方法。选取人脸图像中两眼球中点、各内外眼角点、鼻唇中点和两嘴角点作为9个关键特征点,利用SUSAN算子提取边缘和定位两眼内外角点,并与方向积分投影等方法结合,可以快速准确地获得特征点位置。实验结果表明,该方法能自动定位人脸各关键特征点,平均定位准确率在95%以上。该方法将有助于人脸特征的自动提取和提高人脸识别算法的识别率,虽然是针对固定大小图像(336×480)进行的,但方法本身并不受图像大小的约束;该方法对绝大多数灰度正面人脸图像特征点都能准确地自动定位,即使小角度旋转人脸也取得较好的定位效果,但目前对大角度旋转人脸仍有一定局限。 相似文献
2.
3.
4.
提出了主方向旋转LBP特征,对图像中的平面旋转人脸特征进行描述。以任意邻域LBP特征为基础,加入旋转角度偏移值构成旋转LBP特征,通过Adaboost算法训练出旋转人脸分类器,应用旋转人脸分类器检测图像中可能包含旋转人脸的区域,并对结果进行验证。为了提高扶正精度,在旋转LBP特征的基础上加入主方向值,并提出旋转LBP特征的主方向计算方法,有效的提高了扶正精度。经实验证明,新方法能够以较快速度检测所有角度的平面旋转人脸,正确检测率为94%,角度误差在6度以下。满足平面旋转人脸检测系统对全部角度检测、高检测率、低扶正误差的要求。 相似文献
5.
6.
7.
本文提出了一种基于复合局部信息模型的改进Active Shape Model(ASM)算法,并进一步提出了基于人脸特征点Gabor小波特征降维分类的特征点搜索方法,对改进ASM的结果进行精确校正,达到鲁棒精确定位特征点的目的.本文首先对经过Adaboost检测的彩色图像人脸区域进行光照补偿,然后根据眼睛和唇色的色度特性定位双眼和嘴唇中心位置,从而得到较好的人脸特征点的初始位置.在特征点位置搜索中,本文结合肤色概率信息对ASM方法进行了改进,从而提高了仅基于灰度梯度信息的传统ASM方法的鲁棒性和准确性.最后选取改进ASM搜索后的某些特征点一定领域内梯度值较高的点,提取其Gabor小波特征,通过线性判别式分析法(Linear Discriminant Analysis)和最近邻分类法对其进行分类,搜寻最符合训练样本Gabor特征的点作为最佳位置点,修正了ASM的搜索结果,使得搜寻结果更加精确. 相似文献
8.
9.
实现的人脸检测跟踪与特征点定位系统,基于VC++6.0开发平台,使用opencv作为开发工具,有效缩短了系统的开发时间。首先,本系统采用adaboost算法进行人脸检测,通过合理的特征模板的选择实现了人脸的实时检测;其次,人脸跟踪模块选用camshift算法,利用人脸检测模块生成的人脸坐标传递给跟踪模块,实现人脸的自动实时跟踪,同时建立多个camshift跟踪器对多人脸进行跟踪,并有效地解决了人脸遮挡的问题;最后,通过ASM(active shapemodel)算法实现了实时人脸特征点定位。实验结果表明该系统实现的人脸实时检测跟踪及特征点定位,效果明显,可以作为表情分析和情感计算、视频人脸识别开发的基础。 相似文献
10.
针对传统图像识别算法对疲劳驾驶检测精度差、准确率低的缺陷,提出了一种利用人脸图像特征提取的疲劳驾驶检测方法。首先将实时采集到的车辆驾驶员面部图像进行预处理,借助Dlib检测出图像中的人脸区域并进行人脸图像特征点的标注,然后使用基于眼睛纵横比(Eye Aspect Ratio,EAR)的方法进行图像中人眼疲劳特征的识别,基于嘴唇纵横比(Mouth Aspect Ratio,MAR)的方法进行图像中嘴部疲劳特征的识别,最后利用支持向量机(SVM)的方法将两种特征融合起来进行疲劳驾驶检测。实验表明,该方法可以准确地定位出特征点,疲劳检测的识别率达84.29%,可以有效地识别出疲劳状态。 相似文献
11.
基于肤色检测的快速五官定位算法 总被引:2,自引:1,他引:2
根据视频应用的特点,结合人脸的肤色和特征部位几何分布特征,提出了一种应用于视频序列人脸部位的五官定位算法。实验表明,该算法定位速度快,误检率低。 相似文献
12.
13.
14.
针对目前人脸美貌度评价方法计算复杂等不足,根据黄金比例的美学标准与人脸面部的三分之一比例,提出了一种基于图像的非监督人脸美貌度自动评价方法。基于人脸所具有的类Haar特征,定位人脸区域,提取人脸面部相关特征并确定其位置,结合人脸肤色的聚类性确定人脸边界。根据人脸面部各特征之间所具有的不同比例及其评分权重,通过计算所提取的人脸相关特征各比例与人脸美学人脸特征比例之间的差异度,对人脸美貌进行非监督自动评价。通过实验对比,验证了文中所提方法有效、可行。 相似文献
15.
在深入的对频谱脸法和Fisherface方法进行研究后,综合这两种方法的优点,提出了一种基于频谱脸和Fisher-face的人脸识别新方法。频谱脸方法主要是采用二维小波变换和傅立叶变换。因为人脸图像的低频部分对人脸的表情变化是不敏感的,所以对人脸图像使用二维小波变换,提取人脸图像的低频部分。对人脸图像的低频部分使用傅立叶变换,从而获得原人像的一个低维空间的表达。但是频谱脸特征维数仍然较高,所以在频谱脸法的基础上继续提取人脸频谱图像的Fisherface特征,降低特征的维数,提高识别效率。利用人脸面部构造产生的灰度特性提取眼睛,利用嘴唇的色度特征分割出嘴巴,进而根据眼睛和嘴巴构成三角形模板的特性,精确定位人脸在图像中的位置。实验结果表明,这种结合肤色和面部特征的算法,能够对人脸进行较快速、准确的定位,而且结果比较稳定可靠。 相似文献
16.
17.
18.
Aiming at the problem that face detectors with complex deep neural structures are difficult to deploy in the resource-constrained edge computing environment,to reduce the resource consumption while maintain the accuracy in complex scenes such as multi-scale face changes,occlusion,blur,and illumination,SDPN(multi-scale aware dual path network) for face detection was proposed.The Face-ResNet (face residual neural network) was improved,and a dual path shallow feature extractor was used to understand the multi-scale information of the image through parallel branches.Then the deep and shallow feature fusion module,a combination of the underlying image information and the high-level semantic feature,was used in conjunction with the multi-scale awareness training strategy to supervise the multi-branch learning discriminating features.The experimental results show that SDPN can extract more diversified features,which effectively improve the accuracy and robustness of face detection while maintaining the efficiency of the model and low inference delay. 相似文献