首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
在硅片上制备结构为Ta/NiFeCr/NiFe/CoFe/Cu/CoFe/IrMn/Ta的IrMn顶钉扎自旋阀薄膜,并最终制成了一组基于此自旋阀结构的GMR磁传感器芯片.利用弱磁场下的退火工艺,改变薄膜易磁化轴的方向,当退火温度为150℃、外加磁场为120 Oe时,GMR芯片的矫顽力可以降至0.2 Oe以下.同时建立了一种自旋阀自由层的单畴模型,用以解释这一退火效应.利用Matlab计算GMR芯片的Meff-H曲线,所得到的计算结果与实验结果一致.所以,自旋阀自由层易磁化轴的方向与GMR磁传感器的性能有着密切的关系.  相似文献   

2.
在硅片上制备结构为Ta/NiFeCr/NiFe/CoFe/Cu/CoFe/IrMn/Ta的IrMn顶钉扎自旋阀薄膜,并最终制成了一组基于此自旋阀结构的GMR磁传感器芯片。利用弱磁场下的退火工艺,改变薄膜易磁化轴的方向,当退火温度为150℃、外加磁场为120Oe时,GMR芯片的矫顽力可以降至0.2Oe以下。同时建立了一种自旋阀自由层的单畴模型,用以解释这一退火效应。利用Mat-lab计算GMR芯片的Meff-H曲线,所得到的计算结果与实验结果一致。所以,自旋阀自由层易磁化轴的方向与GMR磁传感器的性能有着密切的关系。  相似文献   

3.
在硅片上制备结构为Ta/NiFeCr/NiFe/CoFe/Cu/CoFe/IrMn/Ta的IrMn顶钉扎自旋阀薄膜,并最终制成了一组基于此自旋阀结构的GMR磁传感器芯片。利用弱磁场下的退火工艺,改变薄膜易磁化轴的方向,当退火温度为150℃、外加磁场为120Oe时,GMR芯片的矫顽力可以降至0.2Oe以下。同时建立了一种自旋阀自由层的单畴模型,用以解释这一退火效应。利用Mat-lab计算GMR芯片的Meff-H曲线,所得到的计算结果与实验结果一致。所以,自旋阀自由层易磁化轴的方向与GMR磁传感器的性能有着密切的关系。  相似文献   

4.
回顾了纳米磁多层结构中电流感应自旋矩传输和电流驱动磁化矢量进动引起的自旋波发射等新量子效应的研究现状及发展。基于该效应的纳米磁多层微波振荡器件具有结构简单、无须外加磁场、容易集成等特点,在现代通信领域具有广阔的应用前景,备受国内外研究者的关注。介绍了自旋波发射效应的理论处理方法和实验研究进展,讨论了自旋波发射器件的工作原理和铁磁膜的磁化方向、外磁场方向、大小及驱动电流对器件性能的影响。目前研制的器件的效率较低、振荡功率小,采用新的垂直磁化结构有助于解决上述问题。  相似文献   

5.
回顾了纳米磁多层结构中电流感应自旋矩传输和电流驱动磁化矢量进动引起的自旋波发射等新量子效应的研究现状及发展。基于该效应的纳米磁多层微波振荡器件具有结构简单、无须外加磁场、容易集成等特点,在现代通信领域具有广阔的应用前景,备受国内外研究者的关注。介绍了自旋波发射效应的理论处理方法和实验研究进展,讨论了自旋波发射器件的工作原理和铁磁膜的磁化方向、外磁场方向、大小及驱动电流对器件性能的影响。目前研制的器件的效率较低、振荡功率小,采用新的垂直磁化结构有助于解决上述问题。  相似文献   

6.
利用射频磁控溅射技术及微细加工技术制备了三明治结构的CoFeSiB/Cu/CoFeSiB多层膜,在频率l~40MHz下研究了多层膜的纵向和横向巨磁阻抗效应,结果表明曲折状三明治结构多层膜的巨磁阻抗效应比单层膜有较大的提高。在交流电流频率5MHz,外加直流磁场100Oe下巨磁阻抗变化率达17.3%。  相似文献   

7.
提出一种新型的电流驱动对称磁多层结构纳米自旋传输矩微波振荡器结构。由两个铁磁膜组成,具有相同厚度,中间被一薄的非磁层隔开。纳米磁多层柱的上、下都有金属层作为电极。一个恒定不变的直流电流垂直通过该磁多层结构时,产生自旋极化和自旋传输矩,并施加自旋矩于每一磁层。当电流超过临界值时,引起两个磁膜的磁化矢量交替翻转方向,并导致磁多层电阻的周期性变化,从而产生稳定的微波振荡。振荡频率与电流呈线性关系,变化范围1~100GHz。微波功率也可以用电流调节,范围在1μW~1mW。  相似文献   

8.
提出了在纳米赝自旋阀中的电流感应自旋传输矩的磁动力学描述,成功地解释了在磁纳米多层结构中的电流驱动微波发射和电流感应磁化翻转现象。自旋流极化由在电导匹配时的自旋流和化学势连续性边界条件决定。自旋矩的纵向和横向分量在自旋阀的电流驱动微波发射和电流感应磁化翻转现象中扮演了不同的角色:纵向自旋矩分量决定了电流感应磁化翻转(CIMS)效应,而横向自旋矩是自旋波发射(SWE)效应所不可缺少的。根据这一理论,由LLG方程自然得到自旋波发射的双模,分别为横向自旋矩引发的X和Y方向的振动,并引起磁多层电阻以频率2w或w(进动频率)随时间变化。磁场和自旋流共同决定了自旋波发射的频率和功率,这一理论预言了某种特殊的磁多层结构,如磁层相互垂直的结构,将具有大得多的微波发射效率,这一结论已经被实验所证实。  相似文献   

9.
电子既是电荷的载体又是自旋的载体。电子作为电荷的载体,使二十世纪成为了微电子学的天下。而随着1988年巨磁电阻(GMR)效应发现以来,通过操纵电子的另一量子属性——自旋,使新一代的电子器件又多了一维控制手段。电子自旋的研究涵盖了金属磁性多层膜、磁性氧化物、磁性半导体等众多体系,探寻这些体系中自旋输运的基本原理是研究的重点。目前,基于传统自旋阀中极化输运及自旋电子学的发展,对新材料和新结构的研究尚不成熟,还有众多科学问题亟待解决,诸如:如何在室温下获得更大的巨磁电阻变化率、提高器件的稳定性及灵敏度、自旋阀中交换偏置场产生的物理根源、实现自旋同半导体完美结合的材料、结构及方法等。因此,基于国内外自旋电子学研究的重点,首先围绕最基本的自旋阀纳米多层膜结构,开展了自旋阀多层膜制备、设计、结构优化、自旋阀交换偏置核心结构物理机制探索等研究;其次,提出了三种异质结新结构,并以大自旋极化率Fe3O4磁性半金属为核心材料,开展了自旋阀、新异质结研究;最后,在理论与材料研究的基础上,对自旋器件进行了设计与实验研究,获得了一些有益的结果:(1)理论方面,基于自旋电子器件进一步发展对新结构、新材料发展的需求,提出了磁性半导体/半导体、磁性半导体/磁性半导体、自旋滤波材料/自旋滤波材料的新自旋异质结模型。理论分析发现,利用磁性半导体/半导体异质结,在负偏压的作用下可实现自旋电子的极化输运,而利用磁性半导体/磁性半导体、自旋滤波材料/自旋滤波材料异质结可实现趋于100%的磁电阻变化率。另外通过计算,对可实现的磁阻效应及对材料的要求进行了详细研究,为新材料的应用奠定了一定的理论基础。(2)虽然基于自旋阀核心结构的自旋电子器件研究已开展了多年,但如何进一步提高自旋电子器件的磁电阻效应、灵敏度、工作范围、工作稳定性和解决这些问题的物理机制,仍是自旋电子学中的一个热点。因而,首先基于Mott二流体模型发现自旋阀巨磁电阻受磁性材料、非磁性材料、自旋极化率、自旋扩散长度、厚度、尺寸、电阻率等影响明显,因而可通过改善制备工艺条件及各层的材料、厚度改善自旋阀的性能,探寻提高巨磁电阻变化率、灵敏度等的有效途径。其次,以理论分析为指导,实验上首先制备Ta/NiFe/Cu/NiFe/FeMn传统自旋阀多层膜,研究了自由层、隔离层、钉扎层、反铁磁层厚度对巨磁电阻效应的影响,找到了最佳的制备工艺;其次,研究了缓冲层材料对自旋阀灵敏度、巨磁电阻效应的影响。发现由于缓冲层元素表面自由能的影响导致了自旋阀灵敏度的改变,指出选择适当表面自由能的缓冲层,可有效改善自由层薄膜的性能,为提高器件的灵敏度提供了有效的途径;最后,基于室温磁场下制备自旋阀交换偏置场较小、工作范围较窄的问题,通过对传统结构的改进,提出了新型双交换偏置场自旋阀模型,为增大器件工作稳定性、人为调制器件工作范围,提供了有效手段。(3)交换偏置在自旋电子器件中具有核心地位,但到目前为止,其产生的物理根源、影响其大小的因素仍是未解决的难题。因而,基于自旋阀的核心结构——铁磁/反铁磁交换偏置效应,研究了NiFe/FeMn双层膜钉扎层、被钉扎层厚度、材料微结构、底钉扎、顶钉扎结构等对交换偏置的影响,分析了交换偏置产生的物理根源;研究了制备磁场大小对钉扎场大小的影响,发现了利用大磁场可实现提高交换偏置的新方法,并利用52kA/m(650Oe)的大磁场在1~2nm的NiFe钉扎层中实现了接近48kA/m(600Oe)的交换偏置场。(4)基于自旋阀测试,研究了初始测试磁场平行与反平行于交换偏置场方向,测试电流的大小对交换偏置场的影响。并用大脉冲电流,在初始测试磁场反平行于交换偏置场方向的样品中,首次实现电流矩在电流沿膜面流动自旋阀结构中对钉扎场的翻转,为铁磁/反铁磁双层膜体系产生交换偏置的机理提供了新的研究途径,并对自旋阀的应用提出了新的挑战。(5)为探寻高自旋极化率的新材料,开展了半金属磁性材料Fe3O4薄膜制备工艺的研究。通过改变溅射功率、退火温度、缓冲层、磁场沉积等,在200W溅射功率、300℃的退火温度、24kA/m(300Oe)沉积磁场的最佳条件下获得了高晶粒织构、成分单一的Fe3O4薄膜,并通过对氧气氛的调节,实现了无缓冲层高性能Fe3O4薄膜的制备。(6)利用所制备的Fe3O4薄膜,进行了基于Fe3O4自旋阀的制备,发现Fe3O4薄膜同其它金属材料间电阻率的失配,是造成巨磁电阻效应低的原因;另外,基于理论提出的磁性材料/半导体异质结,制备了Fe3O4/n-Si纳米结,初步实现了磁性材料到半导体的自旋注入与输运。  相似文献   

10.
1988年Fert与Grunberg科研小组彼此独立地在铁/铬多层膜纳米结构中发现了高达50%的磁电阻效应,从此自旋电子学诞生了.目前,自旋电子学已经发展出磁读头、磁电隔高耦合器、磁随机存储器(MRAM)、微波探测器等器件,年产值近1000亿美元.同时,通过与其它学科的结合,半导体自旋电子学、有机自旋电子学等均成为物理研究的前沿.因此,大量中外院士与专家认为自旋电子学及器件很有可能成为世界第四次产业革命的导火索.  相似文献   

11.
回顾了热助磁开关理论的发展,包括了Neel-Brown弛豫时间理论和Z.Li小组的有效温度或势垒降低模型,前者很好地解释了磁场驱动磁化矢量翻转的热开关过程,但是不能解释电流驱动磁开关工作机理;后者弥补了Neel-Brown理论的不足,较好地说明了电流驱动的磁开关机制,与实验基本符合。有效温度模型解释了开关电流随温度和测量脉冲宽度的下降;按照不同的脉冲宽度划分了开关的热开关和磁动力学开关工作区。在热开关区,临界电流较小,具有低的功耗,但是器件临界电流随温度而变,工作不够稳定且开关速度较慢;在磁动力学开关区,开关速度高,临界电流不随温度变化,工作稳定,但是功耗较大。实际应用中,应考虑适当的折衷。  相似文献   

12.
Magnetization dynamics induced by spin–orbit torques in a heavy‐metal/ferromagnet can potentially be used to design low‐power spintronics and logic devices. Recent computations have suggested that a strain‐mediated spin–orbit torque (SOT) switching in magnetoelectric (ME) heterostructures is fast, energy‐efficient, and permits a deterministic 180° magnetization switching. However, its experimental realization has remained elusive. Here, the coexistence of the strain‐mediated ME coupling and the SOT in a CoFeB/Pt/ferroelectric hybrid structure is shown experimentally. The voltage‐induced strain only slightly modifies the efficiency of SOT generation, but it gives rise to an effective magnetic anisotropy and rotates the magnetic easy axis which eliminates the incubation delay in current‐induced magnetization switching. The phase field simulations show that the electric‐field‐induced effective magnetic anisotropy field can reduce the switching time approximately by a factor of three for SOT in‐plane magnetization switching. It is anticipated that such strain‐mediated ME‐SOT hybrid structures may enable field‐free, ultrafast magnetization switching.  相似文献   

13.
The theory of exchange current switching in ferromagnetic nanojunctions is developed. Included in a junction are two contacting layers: a layer with fixed lattice magnetization and a free layer. The theory takes into account two concurrent effects induced by a polarized current in the junction: (1) transfer of transverse spins from the current carriers directly to the magnetic lattice and (2) injection of longitudinal spins into the free layer and the subsequent generation of a nonequilibrium sd-exchange field. A vector condition that requires continuity of the total spin flux of the electrons and the lattice is applied at the layer boundaries. The equation of motion that meets the vector boundary condition is derived for the magnetization values. The obtained solution exhibits specific features characteristic of inverse switching: Switching occurs when electrons are moving in an efficient injection field and, at the same time, involves transfer of torque to the lattice.  相似文献   

14.
Ferromagnetic insulator thin film nanostructures are becoming the key component of the state‐of‐the‐art spintronic devices, for instance, yttrium iron garnet (YIG) with low damping, high Curie temperature, and high resistivity is explored into many spin–orbit interactions related spintronic devices. Voltage modulation of YIG, with great practical/theoretical significance, thus can be widely applied in various YIG‐based spintronics effects. Nevertheless, to manipulate ferromagnetism of YIG through electric field (E‐field), instead of current, in an energy efficient manner is essentially challenging. Here, a YIG/Cu/Pt layered nanostructure with a weak spin–orbit coupling interaction is fabricated, and then the interfacial magnetism of the Cu and YIG is modified via ionic liquid gating method significantly. A record‐high E‐field‐induced ferromagnetic resonance field shift of 1400 Oe is achieved in YIG (17 nm)/Cu (5 nm)/Pt (3 nm)/ionic liquid/Au capacitor layered nanostructures with a small voltage bias of 4.5 V. The giant magnetoelectric tunability comes from voltage‐induced extra ferromagnetic ordering in Cu layer, confirmed by the first‐principle calculation. This E‐field modulation of interfacial magnetism between light metal and magnetic isolator may open a door toward compact, high‐performance, and energy‐efficient spintronic devices.  相似文献   

15.
The data writing and thermal stability of information storage are studied theoretically for a magnetic random access memory (MRAM) composed of a magnetic tunnel junction or multilayer exhibiting giant magnetoresistance. The theoretical analysis focuses on the magnetization switching in the “free” layer of a MRAM cell, which is induced by a spin‐polarized current imposing a spin‐transfer torque (STT) on the magnetization. It is shown that the writing current in such an STT‐MRAM reduces dramatically near a spin reorientation transition (SRT) driven by lattice strains and/or surface magnetic anisotropy and even tends to zero under certain conditions. In particular, at the size‐driven SRT in the perpendicular‐anisotropy CoFeB‐MgO tunnel junctions, the critical current densities for magnetization reorientations between the parallel and antiparallel states are expected to fall to low values of about 1.3 × 105 and ?3.3 × 104 A cm?2. Remarkably, STT‐MRAMs may combine low writing current with very high thermal stability of information storage (retention over 10 years) even at a high density ≈500 Gbit inch?2.  相似文献   

16.
The successful fabrication of ultra‐thin films of CoFeB/Pt with strong perpendicular magnetic anisotropy and antiferromagnetic interfacial interlayer coupling on flexible polyimide substrates is demonstrated. Despite an increased surface roughness and defect density on the polyimide substrate, magnetic single layers of CoFeB still show sharp coercive switching. Magnetic Kerr imaging shows that the magnetization reversal is dominated by a greater density of nucleation sites than the identical film grown on Si. These layers maintain their magnetic characteristics down to a radius of curvature of 350 ± µm. Further, antiferromagnetically (AF) Ruderman‐Kittel‐Kasuya‐Yoshida (RKKY) coupled bilayers of CoFeB were fabricated which are robust under bending and the coupling strength is successfully modulated via interlayer engineering. Finally, a perpendicular synthetic antiferromagnetic (SAF) thin film grown on a polyimide substrate is patterned into straight 10 µm long nanowires down to 210 nm in width that displayed the robust switching characteristics of the thin film. These are extremely promising results for the fabrication of robust, flexible, magneto‐electronic, non‐volatile memory, logic, and sensor devices.  相似文献   

17.
A ferromagnet-antiferromagnet junction in the presence of an in-plane magnetostatic field and a spin-polarized current flowing perpendicularly to the junction layers is considered. In the macrospin approximation, the system of nonlinear equations describing the dynamics of magnetization of the antiferromagnet layer in such a junction is numerically solved with allowance for the spin torque transfer and the spin equilibrium disturbance caused by spins injected by the current into the antiferromagnet. It is shown that, when the current exceeds a certain threshold, the magnetization becomes instable and that, beyond the instability region, the results are in complete agreement with the theory using linearization in small deviations from the equilibrium. It is found that the development of instability causes switching from the antiparallel configuration to the parallel one and that, in the instability region, nondecaying oscillations of the longitudinal and transverse components of the antiferromagnet magnetization are formed.  相似文献   

18.
The magnetoelectric effect is technologically appealing because of its ability to manipulate magnetism using an electric field rather than magnetic field or current, thus providing a promising solution for the development of energy-efficient spintronics. Although 180° magnetization switching is vital to spintronic devices, the achievement of 180° magnetization switching via magnetoelectric coupling is still a fundamental challenge. Herein, voltage-driven full resistance switching of a magnetic tunnel junction (MTJ) with dipole interaction on a ferroelectric substrate through switchable parallel/antiparallel magnetization alignment is demonstrated. Parallel magnetization alignment along the y direction is obtained under a bias magnetic field. By rotating the magnetic easy axis via strain-mediated magnetoelectric coupling, the parallel magnetizations in the MTJ reorient to the x axis with opposite paths because of dipole interaction, thus resulting in antiparallel alignment. Moreover, this voltage switching of MTJs is nonvolatile owing to variations in dipole interaction and can be well understood via phase field simulations. The results provide an avenue to realize electrical switching of MTJs and are significant for exploring energy-efficient spintronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号