首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
以A1(NO3)3.9H2O、Y(NO3)3.6H2O和Ce(NO3)3.6H2O为氧化剂,尿素为还原剂,采用低温燃烧法合成了Pr3+掺杂的YAG:Ce3+光致发光超细荧光粉,研究了镨离子和尿素的掺杂量对YAG:Ce3+粉体发光性能的影响。结果表明,在450℃的低温条件下,利用低温燃烧法可以制备较纯的Pr3+掺杂的YAG:Ce3+荧光粉;掺杂Pr3+增加红光区的发射峰有利于提高YAG:Ce3+荧光粉的显色性;当Pr3+的掺杂量为0.005 0、尿素的添加量按化合价计算的剂量比为1.2倍时用低温燃烧法所制备的YAG:Ce3+超细荧光粉的发光强度最高。  相似文献   

2.
为增加LED用荧光粉红色发光成分,用高温固相法在还原气氛下制备掺Gd、Tb、La的YAG:Ce^3+荧光粉,用F-4600荧光分光光度计测定激发光谱和发射光谱.研究Gd、Tb、La的不同掺入量对YAG:Ce^3+荧光粉发光性能的影响.结果表明:该荧光粉激发光谱峰值在475 nm附近,发射光谱峰值在540~560 nm之间.掺杂Gd和Tb使得YAG:Ce^3+荧光粉发射光谱有不同程度的红移,掺Gd的YAG:Ce^3+荧光粉的发射光谱红移较Tb更明显;掺杂La的YAG:Ce^3+荧光粉光谱图峰位发生了蓝移.  相似文献   

3.
采用高温固相法,以糊精为还原剂,在温度为1 150℃、N2-H2(10∶1)的还原气氛中合成了S、Dy~(3+)掺杂的SrS:Eu~(2+)红色荧光粉材料。采用X射线衍射分析(XRD)、荧光分光光度计等对其物相与光学性能进行表征。结果表明,样品在蓝光(波长498nm)激发下,添加的S的质量分数为2%时,SrS:Eu~(2+)荧光粉发出的红光强度最强;Dy~(3+)的掺杂摩尔分数为1%时,试样发出的红光最强。其激发光谱是400~600nm的宽带激发光谱。  相似文献   

4.
采用高温固相法合成了SrCaSiO4:Eu,并研究了其光谱性能以及Eu的掺杂浓度对发射光谱强度的影响.研究表明,荧光粉SrCaSiO4:Eu2+的激发光谱位于250~400 nm的宽带,而发射光谱是主峰为500 nm的宽带,所以此荧光粉可以和紫外LED匹配,发射蓝绿光.SrCaSiO4:Eu中的激活剂Eu2+的猝灭浓度为0.5mol%.  相似文献   

5.
采用溶胶-凝胶法与燃烧法相结合制备了YAG:Dy~(3+)粉体,研究了不同Dy~(3+)掺杂浓度对YAG:Dy~(3+)晶体结构和发光特性的影响。XRD结果表明,YAG:3%Dy~(3+)和YAG:4%Dy~(3+)样品均保持了基质YAG的晶相结构。在365nm光激发下,常温下两种掺杂浓度样品的光致发光峰主要集中在可见光区范围,其中掺杂浓度为4%的样品的发光强度要高于浓度为3%的样品。YAG:4%Dy~(3+)样品变温光致发光特性结果表明,在373K~773K温度范围内,发射峰的峰位没发生变化,由于热淬灭效应,573nm和478nm的发光峰的发光强度随温度升高而整体降低,而455nm处的发光峰强度随温度升高而整体升高。计算了455nm和478nm两个发光峰的荧光强度比,并将其与温度关系进行了拟合,得到了Dy~(3+)离子的热耦合能级~4I_(15/2)→~6H_(15/2)和~4F_(9/2)→~6H_(15/2)的有效能级差ΔE为670cm~(-1)。YAG:4%Dy~(3+)的测温绝对灵敏度在373K达到最大值0.00694K~(-1)。  相似文献   

6.
采用溶胶-凝胶法,以柠檬酸为络合剂,乙二醇为螯合剂合成了YAG:Ce3+超细荧光粉.利用X射线衍射、电镜和荧光光谱等测试手段时合成的YAG:Ce3+样品的结构、形貌和发光性质进行了研究.XRD图谱结果表明:所有样品均为立方相.根据Scherrer公式计算,900℃、1000℃和1100℃热处理后样品晶粒的平均粒径分别为69nm、72 nm和89 nm.粒子的粒径和衍射峰强度随热处理温度的提高而增大和增强.激发光谱由位于345 nm的弱激发带和位于470 nm强的激发带组成.发射光谱是位于530 nm左右的宽的发射带,归属于Ce3+离子的5d→4f跃迁.激发和发射强度随热处理温度的提高而增强.  相似文献   

7.
分别用乙二醇和聚乙二醇作为分散剂,采用络合凝胶法合成YAG:Ce^3+荧光粉.利用X射线衍射仪、扫描电子显微镜、荧光分光光度计对合成的荧光粉进行分析.XRD图谱显示所有的荧光粉均为立方相.采用Scherrer公式分别计算以乙二醇和聚乙二醇为分散剂制备的荧光粉的平均粒径:27.1nm和25.0nm.发射光谱的发射峰为530nm处的一个宽带发射峰,对应的是Ce^3+离子5d→4f跃迁;激发光谱有2个激发峰,分别位于345nm和470nm,对应的是Ce^3+离子^2F5/2→5d和^2F7/2→5d的跃迁.光谱研究结果表明:采用乙二醇制备的样品的发光相对强度大于用聚乙二醇制备的样品的发光相对强度.  相似文献   

8.
采用高温固相法制备了Sm3+/Ho3+掺杂Lu3Al5O12基荧光粉。XRD结果显示:所合成的荧光粉具有单一相石榴石结构。荧光光谱分析表明,在蓝光激发下,Lu3Al5O12:Sm3+样品的发射光谱的峰值波长为568nm和614nm,Sm3+的最佳掺杂摩尔分数为6.3%;Lu3Al5O12:Ho3+发射光谱峰值波长为549nm,Ho3+样品的最佳掺杂摩尔分数为4%。在Sm3+、Ho3+共掺Lu3Al5O12:Sm3+,Ho3+荧光粉中,Sm3+、Ho3+均为发光中心,样品的发射光谱中同时出现单掺Sm3+、Ho3+的特征发射峰。可见,Lu3Al5O12:Sm3+,Ho3+可用作暖白光LED用荧光粉。  相似文献   

9.
针对目前玻璃微晶化法制备的Ce~(3+):YAG玻璃陶瓷存在透过率低和抗热衰减性能差等缺点,报道了基于气悬浮无容器凝固技术与热诱导微晶化法相结合的新方法。在采用商用Ce~(3+):YAG荧光粉和Al_2O_3制备母体玻璃的基础上,在930 ℃热处理2 h合成了高密度高结晶度Ce~(3+):YAG透明玻璃陶瓷,并研究了热处理温度对其物相及光谱性能的影响。结果表明,该玻璃陶瓷中仅有YAG相,纳米晶尺寸10~40 nm,最高析晶度(体积比)达57%;它具有与Ce~(3+):YAG荧光粉相似的吸收和荧光发射特性,可见光透过率为50%~60%;在200℃时发光积分强度能保持为室温下的84%;平均荧光寿命最短只有45 ns。验证了该新方法的可行性,并获得了具有较好光学性能和物化稳定性的样品,为透明玻璃陶瓷的合成提供了新思路。  相似文献   

10.
用化学共沉淀法制备掺铈钇铝石榴石(YAG:Ce3+)前驱体,以B2O3-Al2O3-SiO2-Na2O为玻璃基质制作Ce3+掺杂YAG玻璃陶瓷,并封装成玻璃陶瓷白光发光二极管(LED)。改变玻璃陶瓷基片厚度和外形,测量玻璃陶瓷白光LED的光电色参数,并与常规涂敷YAG荧光粉方法制作的白光LED进行对照比较。结果表明,玻璃陶瓷白光LED发射光谱波形与普通白光LED光谱基本一致。玻璃陶瓷基片从0.50mm变化到0.90mm厚时,相关色温(CCT)从4 182 K增加到8862K。0.60mm厚平板玻璃陶瓷基片封装成的白光LED荧光能量转换效率约为20%,中心CCT为6396K,-85°和+85°视角CCT分别为5921K和5898K;而平凸玻璃陶瓷基片封装成的白光LED,-85°和+85°视角CCT变化范围可控制在150K范围内。  相似文献   

11.
采用溶胶.凝胶法合成了Sr2SiO4:Ce3+,Mn2+荧光粉,合成温度为900℃,这远低于固相法制备同类硅酸盐材料所需的温度.X射线衍射图表明,所得样品主要为纯相Sr2SiO4晶体.样品发射光谱为峰值位于472 nm的不对称单峰宽带谱,是典型的蓝白光发射.通过改变Ce3+、Mn2+的浓度,进一步研究了掺杂浓度对发光强度的影响.  相似文献   

12.
用高温固相法在还原气氛下制备掺Gd的YAG:Ce3+荧光粉,并用X射线衍射分析测定(Y1-y,Gdy)2.94Al5O12:Ce0.063+荧光粉的晶体结构,用970CRT荧光分光先度计测定激发光谱和发射光谱.研究Ce3+的不同掺入量对YAG:Ce3+荧光粉的发光性能的影响.结果表明,合成样品的结构属于立方形的钇铝石榴石晶体结构.激发峰位于475nm处,归属于Ce3+的4f到5d跃迁,发射峰位于542nm处,归属于Ce3+的5d到4f跃迁.  相似文献   

13.
采用化学共沉淀法合成了镓取代的掺铈钇铝石榴石 (YAGG:Ce) 荧光粉.通过TG和FTIR分析了样品合成过程中的反应机理,根据XRD晶相结构和XPS表面元素分析讨论了Ga取代后晶体结构与表面元素组成,并用光谱分析了Ga掺杂浓度对样品发光性能的影响状况.实验结果表明,镓离子取代基质中的铝离子后XRD图谱峰出现向小角度方向移动的现象,发光光谱的强度受Ga取代浓度的影响.  相似文献   

14.
以Y2O3,Eu2O3为原料,NH3?H2O和NH4HCO3为沉淀剂,采用共沉淀法,在700至1200℃下煅烧2h制备出Y2O3:Eu3+纳米粉体,通过X射线衍射分析(XRD)、扫描电镜(SEM)和荧光分光光度计等表征样品的性能,研究不同掺杂浓度,不同烧结温度及不同沉淀剂对粉体各项性能的影响。结果表明,以两种沉淀剂制备的纳米粉体均为纯相,与Y2O3标准PDF卡片41-1105相吻合。以NH3?H2O为沉淀剂制备出来的前驱体在1100℃下煅烧2h获得的粉体分布均匀,近似球形,粒径分布在50~80nm,以NH4HCO3为沉淀剂制备出来的前驱体在1100℃下煅烧2h获得的粉体分布均匀,纯度高,具有良好的分散性,粒径分布在60~80nm。制备出来的粉体在波长为254nm的紫外光激发下发出611nm的红光。  相似文献   

15.
Glasses are prepared by sintering P2O5, ZnO and Ce2(C2O4)3 10H2O mixtures at 1 100 ℃ in air and then annealed at 400 ℃ for 10 hours. The obtained glasses are homogeneous, transparent and colorless. Emission and excitation spectra are measured for the samples and the results show that the glasses contain Ce3+ trivalent cerium ions. The parameters of glass preparation obtained here may be adapted to preparing this type of glasses doped with other lanthanide ions, so as to study energy transfer phenomena and variation of radiative lifetime with refractive index due to local field effect.  相似文献   

16.
采用高温固相法在空气气氛中制备了具有NASICON结构的Eu3+掺杂Na3Zr2Si2PO12:Eu3+红色荧光粉。利用X射线衍射、漫反射光谱、荧光光谱、荧光寿命衰减曲线以及量子效率系统研究了该样品的晶体结构及荧光性能。结果表明,样品XRD图中不含明显的杂峰,表明在实验浓度范围内Eu3+的掺杂没有改变基质的晶体结构,样品为单相。合成过程中,需要对样品多次压片烧结,才能获得较好的单相。在近紫外光激发下,样品能发出618 nm红光,荧光强度最大对应的Eu3+的掺杂摩尔分数是24%。根据Rexter理论分析,浓度猝灭源于Eu3+离子之间的电四极-电四极相互作用。样品在室温下的最高内量子效率和外量子效率分别是61%和15%,荧光衰减的寿命范围在2.08~2.84 ms。样品Na2.76Zr2Si2PO12:0.24 Eu3+在150℃时内量子效率约为50%,表明样品具有良好的热稳定性。将样品Na2.76Zr2Si2PO12:0.24 Eu3+与394 nm波长的紫外芯片封装成LED灯,显色指数达到75.6.Eu3+掺杂Na3Zr2Si2PO12有望作为一种新型红色荧光粉用于近紫外激发白光LED。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号