共查询到17条相似文献,搜索用时 78 毫秒
1.
针对滚动轴承多故障诊断中特征提取困难和分类准确性低的问题,从有效特征提取和故障分类准确性两方面出发,将变分模态分解(VMD)和极限学习机(ELM)方法结合,提出了一种自适应滚动轴承多故障诊断方法.针对VMD参数需人为事先设定导致信号分解效果差的情况,提出了灰狼算法(GWO)优化VMD实现自适应地获取最佳分解参数k和α.... 相似文献
2.
《青岛科技大学学报(自然科学版)》2017,(2)
针对滚动轴承故障诊断中多尺度样本熵特征向量维数高及其维度难以确定问题,提出了一种基于多尺度样本熵的主成分分析的模糊聚类故障识别模型。该模型首先使用多尺度样本熵方法提取滚动轴承正常、内圈故障、外圈故障、滚动体故障的振动信号特征。其次对多尺度样本熵特征向量使用主成分分析方法进行降维。然后通过累积贡献率来确定其特征向量的维度,并利用选定的特征向量属性作为模糊C均值聚类模型的输入并进行故障识别。最后通过分类系数和分类熵这两个聚类评价指标进行聚类效果的检验。实验结果表明该模型能较好的区分滚动轴承的正常与内圈故障、外圈故障、滚动体故障这4种信号。 相似文献
3.
设备运转的状态信息能够通过振动信号实时反映出来,然而由于信号中混杂了大量背景噪声等干扰信息,使得信号分解技术成为关注的重点之一。变分模态分解(variational mode decomposition,VMD)克服了传统自适应信号分解方法的不足,分解出的信号消除了端点效应和模态混叠等失真现象,具有抗噪干扰能力强、计算速度快等优点。针对VMD模态K数难以选取的问题,以信号主频率个数作为K的选择依据,然后结合信息熵测度,提出了一种的新的振动信号提取方法,剔除干扰信息,便于故障类型的查找。仿真和轴承实验表明了该方法的有效性和可行性。 相似文献
4.
针对滚动轴承故障振动信号非平稳性与非线性的特点,提出将集合经验模态分解(ensemble empirical mode decomposition, EEMD)方法用于轴承信号处理.滚动轴承故障诊断的重要环节是特征提取,其直接关系到轴承故障诊断的正确率.因此,将熵知识应用到轴承特征提取步骤中,应用奇异熵与能量熵知识,提出一种峭度值与以上两种熵进行特征融合的特征提取方法,完成滚动轴承故障诊断.该方法首先对滚动轴承的振动信号进行EEMD模态分解为若干个本征模态函数(intrinsic mode function, IMF)之和,对每个含有故障特征的IMF进行奇异熵、能量熵与峭度值求取;其次,将求得的三种数据输入核主元分析(kernel principal component analysis, KPCA)中进行特征融合与特征提取;最后,将提取的特征作为支持向量机(support vector machine, SVM)的输入参数进行故障分类.试验结果表明此方法能够准确有效地识别出滚动轴承的工作状态,实现了滚动轴承故障分类的自动化. 相似文献
5.
滚动轴承是旋转机械的重要零部件,当发生早期故障时,难以有效地提取其微弱的故障特征.针对这一问题,提出了优化参数
6.
机械设备状态监测与故障诊断的关键是故障特征的表征与提取,采用基于熵及相关方法建立的非线性动力学指标能够提取蕴藏在振动信号中的非线性故障特征信息。自熵方法引入以来,通过不断修改和改进来提高熵估计的准确性,多尺度熵进一步拓展了时间序列其他尺度上包含的复杂度信息,其在设备状态监测与故障诊断中得到广泛应用。本文对单一尺度熵及多尺度样本熵、多尺度模糊熵、多尺度排列熵和多尺度散布熵等多尺度熵方法在机械智能故障诊断中的应用进行综述,总结不同方法的特点优势与不足;针对多变量数据处理问题,综述由单变量推广到多变量的多元多尺度熵的应用发展过程。最后结合多尺度熵相关方法在机械智能故障诊断中面临的问题与挑战,对未来发展方向进行展望,即在工业大数据应用、故障机理、可解释性角度构建基于熵的深度学习模型。 相似文献
7.
8.
提出了一种基于经验模式分解(EMD)和支持向量机(SVM)的传感器故障诊断方法,该方法对传感器输出信号进行经验模态分解,将其分解为若干个固有模态函数(IMF),对每个IMF通过一定的削减算法增强故障特征,然后计算每个IMF和残余项的能量以及整个信号的削减比作为特征向量,以此作为输入来建立支持向量多分类机,判断传感器的故障类型。通过压力传感器的故障诊断结果表明,该方法能有效的应用于传感器的故障诊断中。 相似文献
9.
10.
针对电力系统多元非线性信号模态辨识困难的问题,提出一种自适应多元变分模态分解方法(自适应MVMD)对多元低频振荡信号进行辨识.自适应MVMD法通过对构建的多元约束变分模型迭代求解获得最优分离模态集合,避免了噪声扰动下的模态混叠及虚假模态等问题.首先通过最大复原近似度确定分离模态数K,然后利用自适应多元变分模态分解法对多元信号进行辨识以获得模态集合,对各信号中同频模态分类提取,并利用Hilbert变换以及傅里叶变换频谱分布对振荡参数进行辨识.测试算例及仿真算例证明了该方法的有效性,与经验模态分解法对比结果显示自适应MVMD法对含噪声信号辨识能力更强. 相似文献
11.
针对滚动轴承的单一故障进行诊断,提出了将小波VMD-Teager能量算子相结合和小波CEEMD-Teager能量算子相结合的诊断方法。对于滚动轴承的故障信号首先是进行小波降噪,使用VMD分解得到IMF分量,利用峭度和相关系数的大小选择合适的IMF分量,进行重构。通过对重构的IMF进行Teager能量算子包络解调处理,最后可以得到不同故障程度的轴承故障的特征频率。对比VMD处理和CEEMD处理得到的故障信号包络图,利用实验数据验证表明, VMD处理能更有效提取滚动轴承的单一故障微弱特征。 相似文献
12.
针对应用集合经验模态分解(ensemble empirical mode decomposition,EEMD)方法难以提取强噪声背景下滚动轴承微弱故障特征的问题,提出了将最小熵反褶积(minimum entropy deconvolution,MED)和小波阈值去噪与EEMD相结合的改进方法.先采用MED对滚动轴承振动信号降噪,增强冲击特征;然后利用基于EEMD的小波阈值去噪方法处理降噪后信号得到一组固有模态分量(intrinsic mode function,IMF),并依据相关系数准则剔除虚假分量;对重构后信号进行Teager能量算子解调分析,提取其微弱故障特征.通过仿真信号和实验台信号验证了该改进方法的有效性. 相似文献
13.
基于小波包分析的滚动轴承故障诊断 总被引:2,自引:0,他引:2
应用小波包分析方法构造滚动轴承故障信号的能量特征向量,再以此作为神经网络的输入,对滚动轴承故障进行分类,实践表明,能量特征向量较显著的表达了故障,有较好的诊断效果. 相似文献
14.
针对滚动轴承故障振动信号的非平稳特征,提出了一种基于经验模态分解的滚动轴承故障诊断方法,对采集的信号范围进行了筛选。利用经验模态分解将振动信号分解为多个平稳的固有模态函数。选取包含主要故障信息的IMF分量分析其时域和频域特征。将时域信号特征量和频谱图峰值对应的频率归一化处理,输入Elman神经网络进行工作状态的自动判断。 相似文献
15.
滚动轴承故障振动检测方法 总被引:8,自引:0,他引:8
赵晓玲 《重庆科技学院学报(自然科学版)》2007,9(1):41-44
滚动轴承最常见的故障是磨损,磨损类故障的最大特点是无明显的冲击脉冲信号.滚动轴承故障振动诊断方法主要有特征参数法、频谱分析法和包络法.分别就振动诊断方法中的各类诊断技术及其特点进行分析. 相似文献
16.
滚动轴承故障是旋转机械失效和损坏的最主要原因之一。轴承振动信号通常表现为非线性和非稳态的特征。常规的时域和频域方法不容易对轴承工作的健康状况做出准确的评估。提出了一种基于多特征提取的滚动轴承故障检测方法,首先从轴承振动信号中提取故障特征(熵特征、Holder系数特征及改进分形盒维数特征),然后通过灰色关联理论算法自动地识别出轴承的故障类型和严重程度。该方法能够在确保检测实时性的同时,准确有效地识别不同的滚动轴承故障类型及其严重程度。 相似文献
17.
针对滚动轴承的故障特点,提出了一种小波包分析、粗糙集理论和神经网络相结合的轴承诊断方法.利用小波包变换对信号进行适当层次的小波包分解,对信号的频带进行精细的分割,以各个频带信号能量的分布情况作为故障特征量,形成故障诊断决策表;接着根据粗糙集理论进行处理得到更为简明的最优诊断规则;然后根据约简结果,建立了神经网络故障诊断系统;最后以诊断实例验证了该方法的有效性和可行性. 相似文献