首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
姚喜贵  王宇 《小型内燃机》2000,29(2):1-3,14
本文提出了一种利用化学反应动力学模型与燃烧模型及紊流火焰传播模型建立的点火式天然气发动机双区燃烧模型,用该模型能较好地模拟点火式天然发动机燃烧过程,并能实现爆预测及研究其发生的诸多因素,采用此模型对CA6102汽油机改装为点火式天然气发动机(以下简称为“CNG发动机”)进行模拟计算的结果与试验结果能较好地吻合,证明了该模型的可行性。  相似文献   

2.
本文提出了一种利用化学反应动力学模型与燃烧模型及紊流火焰传播模型建立的点火式天然气发动机双区燃烧模型 ,用该模型能较好地模拟点火式天然气发动机燃烧过程 ,并能实现爆燃预测及研究其发生的诸多因素。采用此模型对CA6 10 2汽油机改装为点火式天然气发动机 (以下简称为“CNG发动机”)进行模拟计算的结果与试验结果能较好地吻合 ,证明了该模型的可行性。  相似文献   

3.
本文总结火花点火式发动机燃烧过程研究的发展,着重讨论了火花点火式发动机分层,稀薄燃烧技术的特点,分析其相对传统燃烧方式的优点和应用中存在的问题,展望今后的发展趋势。  相似文献   

4.
火花点火发动机爆震燃烧特性的研究   总被引:3,自引:0,他引:3  
王良煜 《内燃机学报》1998,16(2):176-183
本介绍了采用高速摄影法和同步记录气缸压力示功图,对火花点火发动机机爆震燃烧特刊物的实验研究。  相似文献   

5.
基于单缸试验机研究了过量空气系数对射流点火发动机性能的影响.通过分析发动机性能曲线、缸内燃烧情况及爆震特性探究射流点火最佳运行区间,并与火花点火燃烧方式进行对比.结果表明,射流点火可以有效提升瞬时放热率并拓展发动机稀燃极限,缩短缸内混合气滞燃期与燃烧持续期,同时燃油经济性有一定提升.在稀燃条件下氮氧化物排放极低.爆震方...  相似文献   

6.
脉冲爆震发动机起爆点火系统方案研究   总被引:1,自引:0,他引:1  
在分析爆震波的基本理论、脉冲爆震发动机(PDE)的工作原理及对现有航空发动机和汽车点火系统进行研究的基础上,根据PDE对起爆系统点火能量和火花频率可调的要求,提出了以晶闸管为开关控制元件和电容储能的半导体高能点火系统方案.设计的倍压整流、半波整流和直流供电的脉冲爆震发动机起爆点火系统实现了点火能量和火花放电频率的控制.电路模拟仿真表明,设计的起爆点火系统可满足脉冲爆震发动机的要求.  相似文献   

7.
提出了含5个待定系数的修正韦伯函数,并应用多元非线性回归技术确定这些系数,模拟了具有双火焰区燃烧模式和稀燃-速燃特性的汽油机射流燃烧系统燃烧室中混合气的燃烧特性,从而成功地借助示功图分离出对分析整个燃烧过程至关重要的各火焰区中的质量燃烧率和火焰速比等参数,构成了实用的附有双火焰区的三区准维燃烧分析模型。应用实例表明,该函数与多区模型相结合,将在火花点火发动机燃烧模拟中具有强大生命力。  相似文献   

8.
用光纤信号对火花点火发动机爆震燃烧的测试研究   总被引:2,自引:0,他引:2  
利用光纤传感器火花点火发动机爆震燃烧进行探测研究,并与以往常规压力传感器的测量结果比较,探索光纤传感技术在燃烧及其爆震测控中的应用的可行性,研究结果表明,对于爆震始点的判断,光纤传感器获得明显的提前,得以实现爆震预测和临界爆震状态识别,而且灵敏度和准确度均较高。它不但实现爆震燃烧的探测,而且有利于实现其它多项燃烧特征及其多变性的测试。光纤传感器可成为电控技术中燃烧过程测控信号的重要手段。  相似文献   

9.
本文介绍了火花点火发动机着火延迟期、燃烧持续期及NOx排放的数值计算方法,并结全准维湍流卷吸模型进行了数值计算。文中给出了准维模型的计算与试验结果,并分析计算了若干发动机运行参数对着火延迟期、燃烧持续期及NOx排放和平均指示压力的影响。结果表明,根据准维模型建立的着火延迟期、燃烧持续期及NOx排放计算式有较清晰的物理意义,对分析、理解火花点火发动机燃烧与排放形成有一定的参考价值。  相似文献   

10.
本文在分析火花点火发动机湍流涡结构及缸内湍流特性参数的基础上,提出了适用于火花点火发动机燃烧计算的准维湍流卷吸模型,通过建立相应的子模型及求解方程,实现了燃烧过程的计算;对压缩比为10的紧凑型燃烧室,在改变发动机转速、负荷、空燃比以及点火正时的情况下,计算得到的压力示功图、质量燃烧率等与实测值一致,从而证实了该模型的合理性。  相似文献   

11.
Combustion modeling plays a key role in an engine simulation to predict in-cylinder pressure development and engine performance with a high level accuracy. Wiebe function, representing mass fraction burned (MFB) as a function of crank angle position, is widely used to predict the combustion process. The work presents a predictive zero-dimensional (Zero-D) single zone engine modeling of an SI engine fuelled with methane and methane-hydrogen blend. In this work, the single and double forms of Wiebe function were used to estimate the combustion process in the modeling. For this purpose, the single and double-Wiebe functions' parameters were calculated using the least squares method by fitting to the MFB curves calculated from experimental pressure data. These Wiebe functions were, then, introduced to the Zero-D single zone engine model developed for the methane and methane-hydrogen blend fueled SI engine to obtain in-cylinder pressure development and gross indicated mean effective pressure (GIMEP) for the engine performance prediction. The results show that the model with double-Wiebe Function fit better than that with single-Wiebe function. In addition, the fitted double-Wiebe function has a significant improvement in the GIMEP prediction for methane-hydrogen blend fueled SI engine modeling rather than the methane-fueled modeling.  相似文献   

12.
本文以实验和计算机模拟的结果为基础,略去壁面区域复杂的传热、传质及蒸发等物理过程,在汽态喷雾的假设下,建立了以模拟直喷式柴油机喷雾碰壁燃烧过程的燃烧率、NO形成过程为目的数学模型.通过计算结果与实验的比较证明,在汽态假设下,合适的构造子模型可以对该燃烧过程做出模拟.  相似文献   

13.
旋风炉内气相燃烧及两相流动的数值模拟   总被引:9,自引:0,他引:9  
在有反应两相流动及煤粉燃烧的全双流体模型(PTF模型,pure two-fluid model)基础上,采用修正的k-ε-kp两相湍流模型,对旋风炉内的湍流气相燃烧(甲烷和一氧化碳的燃烧)及在气相燃烧条件下的两相流动进行了数值模拟研究,模拟结果表明,在有燃烧的情况下,在旋风炉的底部存在近壁回流区,该回流区有利于火焰稳定,气粒两相切向速度分布具有类似的Rankine涡结构,该研究为煤粉燃烧的数值模拟  相似文献   

14.
15.
突扩燃烧室内回流区长度研究   总被引:2,自引:0,他引:2  
讨论了热过程对圆管突扩回流流动的影响,数值计算的结果表明:圆管突扩流动中,加热使流动方向上的逆压梯度降低,从而使回流区长度减小,在此基础上,用均匀热源的方法来模拟热态的燃烧过程,对层流、湍流状况下分别拟合出回流区长度与燃烧温度的近似关系,以便能通过冷态的数据预测热态回流区长度  相似文献   

16.
Rapid compression machines (RCMs) typically incorporate creviced pistons to suppress the formation of the roll-up vortex. The use of a creviced piston, however, can enhance other multi-dimensional effects inside the RCM due to the crevice zone being at lower temperature than the main reaction chamber. In this work, such undesirable effects of a creviced piston are highlighted through computational fluid dynamics simulations of n-heptane ignition in RCM. Specifically, the results show that in an RCM with a creviced piston, additional flow of mass takes place from the main combustion chamber to the crevice zone during the first-stage of the two-stage ignition. This phenomenon is not captured by the zero-dimensional modeling approaches that are currently adopted. Consequently, a novel approach of ‘crevice containment’ is introduced and computationally evaluated in this paper. In order to avoid the undesirable effects of creviced piston, the crevice zone is separated from the main reaction chamber at the end of compression. The results with ‘crevice containment’ show significant improvement in the fidelity of zero-dimensional modeling in terms of predicting the overall ignition delay and pressure rise in the first-stage of ignition. Although the implementation of ‘crevice containment’ requires a modification in RCM design, in practice there are significant advantages to be gained through a reduction in the rate of pressure drop in the RCM combustion chamber and a quantitative improvement in the data obtained from the species sampling experiments.  相似文献   

17.
以头部涡流片加主燃孔形式的小型发动机环形回流燃烧室为研究对象,采用Fluent软件进行了数值研究,对比分析了有无主燃孔、主燃孔相对位置以及主燃孔轴向位置对该类型燃烧室主燃区流场、温度场以及出口温度分布的影响。结果表明:该类型燃烧室主要通过火焰筒头部圆形结构、涡流片形成回流区,而内外环主燃孔的射流主要起到截断主流、促进回流区形成以及改变回流区形态的作用;主燃孔相互交错,有利于促进内外环主燃孔的射流相互对冲剪切,形成较为饱满的回流区;主燃孔轴向位置向燃烧室出口方向移动,主燃孔射流截断主流和挤压主流的效果减弱,出口温度分布系数急剧变大。  相似文献   

18.
往复流多孔介质燃烧器的二维数值模拟与结构改进   总被引:1,自引:0,他引:1  
对往复式惰性多孔介质燃烧器进行了二维数值模拟,模型的有效性通过实验数据进行验证.在燃烧器中分别填充4孔/cm泡沫陶瓷或小球,研究其内部的燃烧温度和压力损失.结果表明,由相同材料制成但结构不同的多孔介质对燃烧器内的高温区域和压力损失有显著的影响.孔隙率较大的泡沫陶瓷适合于布置在燃烧区,而孔隙率较小的小球适合于布置在热交换区域.改进燃烧器结构,即在燃烧器的中间布置泡沫陶瓷,而在两端布置小球.对于当量比为0.1的甲烷与空气混合气,得到了更为宽广的高温区域和适度的压力降.  相似文献   

19.
Current status of droplet and liquid combustion   总被引:2,自引:0,他引:2  
The present understanding of spray combustion in rocket engine, gas turbine, Diesel engine and industrial furnace applications is reviewed. In some cases, spray combustion can be modeled by ignoring the details of spray evaporation and treating the system as a gaseous diffusion flame; however, in many circumstances, this simplification is not adequate and turbulent two-phase flow must be considered. The behavior of individual droplets is a necessary component of two-phase models and recent work on transient droplet evaporation, ignition and combustion is considered, along with a discussion of important simplifying assumptions involved with modeling these processes. Methods of modeling spray evaporation and combustion processes are also discussed including: one-dimensional models for rocket engine and prevaporized combustion systems, lumped zone models (utilizing well-stirred reactor and plug flow regions) for gas turbine and furnace systems, locally homogeneous turbulent models, and two-phase models. The review highlights the need for improved injector characterization methods, more information of droplet transport characteristics in turbulent flow and continued development of more complete two-phase turbulent models.  相似文献   

20.
Combustion environments in propulsion systems involve the interaction of a variety of physics. In devices such as augmentors, ramjets and scramjets, such environments include the interaction between combustion, high-intensity turbulence, and/or strong flow compressions and expansions, physics which are termed here high-speed combustion. With this motivation in mind, this paper addresses: What are the problems encountered when modeling these interactions, or in other words, what are the problems of turbulent-combustion modeling? Do such interactions need modeling? What are the challenges when going from modeling low-speed- to high-speed-combustion problems? This work addresses these questions by summarizing several modeling studies of gaseous high-speed-combustion problems, and attempts to interpret some predictions in the context of the models’ basic assumptions. Interestingly, the challenges to model high-speed combustion are such that a reader not interested in this topic but in the general one of modeling turbulent combustion may find the present paper useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号