首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

Sustained release potassium chloride tablets were prepared using a melt granulation formulation in a Baker Perkins Granulator. Parts of the validation for this manufacturing process are highlighted in this paper including granulation end point temperature, incorporation of extragranular excipients, amount of wax in the formulation, granule cooling rate and scale of the operation. A number of other factors have been studied which are not Included here although they are no less important. The release of potassium chloride from tablets was found to be dependent on the wax level and the amount of extragranular excipients (“wicklng agent”). Within the controlled production process, any variation in granulation end point temperature and granule cooling rate should not have any significant effect.  相似文献   

2.
The purpose of this work has been the designing and “in vitro” evaluation of a potassium chloride tablet using a wax matrix.

Camauba wax, stearyl alcohol and stearic acid ware employed to prepare granulates at different drug/wax ratios. Fran dissolution kinetic studies and technological performances a 75/25 - KCl/camauba wax granulates was selected. The rheolqgical properties of granulates were characterized and tablets were manufactured employing ccrrmun tablets excipients. Also a coating procedure was developed. The coated tablet formulation selected release the potassium chloride according to the USP requirements.

The dissolution kinetics of the potassium chloride from both coated and uncoated tablets fit the Higuchi diffusion model, giving a straight line when the amount dissolved is plotted against the square root of time.  相似文献   

3.
Abstract

The purpose of this work has been the designing and “in vitro” evaluation of a potassium chloride tablet using a wax matrix.

Camauba wax, stearyl alcohol and stearic acid ware employed to prepare granulates at different drug/wax ratios. Fran dissolution kinetic studies and technological performances a 75/25 – KCl/camauba wax granulates was selected. The rheolqgical properties of granulates were characterized and tablets were manufactured employing ccrrmun tablets excipients. Also a coating procedure was developed. The coated tablet formulation selected release the potassium chloride according to the USP requirements.

The dissolution kinetics of the potassium chloride from both coated and uncoated tablets fit the Higuchi diffusion model, giving a straight line when the amount dissolved is plotted against the square root of time.  相似文献   

4.
The general utility of a method for determination of high-shear wet granulation end point by monitoring the wet granule particle size distribution was evaluated. Wet granulation was conducted in a 25-liter high-shear mixer using four model drugs with different solubilities and particle sizes (ethenzamide, unmilled and milled acetaminophen, and antipyrine). For each drug formulation, its wet granule particle size fraction and target range for granulation end point determination were selected based on the tablet characteristics that are known to be influenced by the wet granulation process. Granules manufactured under different conditions (i.e., different main and chopper blade speeds and binder supplying rate) but manufactured to the same granulation end point determined by the selected fraction and range showed very similar granule characteristics and subsequently very similar tabler characteristics. From the fact that there was a good correlation between the wet and dry-sized granule particle size distributions even if the drying method was changed from fluid-bed drying to vacuum drying, the general application of the end point determining method was verified. Further, the method was shown to be sensitive to the critical granulation parameters for granulation progression and to be very capable of determining the granulation extent. Thus, it was suggested that the method is applicable to various drugs and formulations for determination of wet granulation end point.  相似文献   

5.
The influence of excipients on drug release from chitosan matrix tablets was investigated, using diltiazem hydrochloride as model drug. Tablets were prepared by direct compression and the effect of different concentrations of the excipients lactose, sodium lauryl sulphate, sodium alginate, carbopol 934, citric acid and hydroxypropylmethyl-cellulose on drug release profiles was studied. Sustained release of the drug was obtained in all cases but the results indicate that both type and amount of excipient used influences drug release rate. The results support the idea that chitosan can be suitable as a basis for sustained release matrix tablets, and that drug release rate can be influenced by the addition of excipients. It is possible to make use of the interaction between chitosan and excipients in the formulation to provide further prolongation of release.  相似文献   

6.
The purpose of this study was to investigate the effect of three process variables: distribution of hydroxypropyl methylcellulose (HPMC) within the tablet matrix, amount of water for granulation, and tablet hardness on drug release from the hydrophilic matrix tablets. Tablets were made both by direct compression as well as wet granulation method. Three formulations were made by wet granulation, all three having the exact same composition but differing in intragranular:intergranular HPMC distribution in the matrix. Further, each formulation was made using two different amounts of water for granulation. All tablets were then compressed at two hardness levels. Dissolution studies were performed on all tablets using USP dissolution apparatus I (basket). The dissolution parameters obtained were statistically analyzed using a multilevel factorial-design approach to study the influence of the various process variables on drug release from the tablets. Results indicated that a change in the manufacturing process could yield significantly dissimilar dissolution profiles for the same formulation, especially at low-hardness level. Overgranulation could lead to tablets showing hardness-dependent drug-release characteristics. Studies showed that intergranular addition of a partial amount of HPMC (i.e., HPMC addition outside of granules) provided a significant advantage in making the formulation more robust over intragranular addition (i.e., that in which the entire amount of HPMC was added to the granules). Dissolution profiles obtained for these tablets were relatively less dependent on tablet hardness irrespective of the amount of water added during granulation.  相似文献   

7.
Abstract

The influence of excipients on drug release from chitosan matrix tablets was investigated, using diltiazem hydrochloride as model drug. Tablets were prepared by direct compression and the effect of different concentrations of the excipients lactose, sodium lauryl sulphate, sodium alginate, carbopol 934, citric acid and hydroxypropylmethyl-cellulose on drug release profiles was studied. Sustained release of the drug was obtained in all cases but the results indicate that both type and amount of excipient used influences drug release rate. The results support the idea that chitosan can be suitable as a basis for sustained release matrix tablets, and that drug release rate can be influenced by the addition of excipients. It is possible to make use of the interaction between chitosan and excipients in the formulation to provide further prolongation of release.  相似文献   

8.
Wet granulation of a hydrophilic sustained release matrix tablet formulation has been studied. A fractional factorial experimental design was employed to identify principal influences and interacting factors from the following : granulation fluid volume, mixing time, mixer speed and inclusion of a wet screening step. Fluid volume and mixing time were primary factors affecting mean granule size. Fines in the granulation were reduced at higher fluid levels and by inclusion of a wet screening operation. There were several interacting factors influencing the particle size properties of the granulation. The factors studied had little influence on the bulk density of the granulation.

The influence of granule mean particle size on flow, compressibility and drug release from finished tablets was evaluated. Flow and compressibility were influenced by granule properties and the data generated suggested that should final tablet properties deteriorate on scale up it may be possible to ameliorate the effect by modification of granulation fluid volume or mixing time or both.

The factors studies had no influence on release of drug from finished tablets.  相似文献   

9.
Diprophylline release from glycerol palmito-stearate “precirol” matrices containing different direct compression (DC) excipients, with variable dissolving/disintegrating ability, is investigated. The matrices are formed by employing dry-heat granulation and compression at elevated temperature.

Greater drug release prolongation is achieved with the dissolving DC excipients than with the swelling ones. The release is described on the basis of two biexponential first order models and the Weibull function as well.

The effect of compression conditions (temperature and pressure) on the drug release is found to be related to the compaction behaviour of the DC excipients, i.e. plastic deformation or fragmentation.  相似文献   

10.
Abstract

Wet granulation of a hydrophilic sustained release matrix tablet formulation has been studied. A fractional factorial experimental design was employed to identify principal influences and interacting factors from the following : granulation fluid volume, mixing time, mixer speed and inclusion of a wet screening step. Fluid volume and mixing time were primary factors affecting mean granule size. Fines in the granulation were reduced at higher fluid levels and by inclusion of a wet screening operation. There were several interacting factors influencing the particle size properties of the granulation. The factors studied had little influence on the bulk density of the granulation.

The influence of granule mean particle size on flow, compressibility and drug release from finished tablets was evaluated. Flow and compressibility were influenced by granule properties and the data generated suggested that should final tablet properties deteriorate on scale up it may be possible to ameliorate the effect by modification of granulation fluid volume or mixing time or both.

The factors studies had no influence on release of drug from finished tablets.  相似文献   

11.
Moisture activated dry granulation (MADG) method was used to develop IR tablets with cohesive, fluffy and high dose drugs. To evaluate this approach, three drugs: metformin hydrochloride, acetaminophen and ferrous ascorbate were selected as model compound along with three binders: maltodextrin DE16, PVP K 12 and HPC. The granules were generated using MADG method and tablets were prepared using rotary tablet press. The granules and tablets were characterized for particle size analysis, flow properties, tablet hardness, friability, moisture content, dissolution study, disintegration time and stability study. All results were found to be within acceptable limits. Development of all formulation tablets were found as best fitted for an immediate release of Metformin hydrochloride, acetaminophen and ferrous ascorbate. MADG delivered a robust manufacturing process for generation of granules with excellent flowability. The tablets prepared using this method were found to show better content uniformity, good compactability and low friability. Use of this approach aids to lower the amount of excipients used to overcome physiochemical limitation of the drug substances and there side effects. Both drying and milling steps in wet granulation were not required for MADG process. MADG became a cost effective process which could lead to reduced total tablet size and also save time.  相似文献   

12.
The purpose of this study was to evaluate sustained drug release after melt granulation and heat treatment. Theophylline (anhydrous) and phenylpropanolamine hydrochloride (PPA) were used as model drugs. Compritol® 888 ATO (Glyceryl Behenate NF) was incorporated as the wax matrix material. Formulations with drug:wax in 3:1 and 1:1 ratios were evaluated. Tablets were made by dry blending or melt granulation; some of the tablets were heat treated at 80°C for 30 min. Tablets with or without heat treatment were tested for drug release using in vitro drug dissolution. The results showed that melt granulation gave slower drug release than dry blending. Heat treatment further retarded drug release for both dry blending and melt granulation. The drug release rates for theophylline were slower than for PPA at the same wax level and processing method. The drug release profiles were linear using a square root of time scale. In conclusion, melt granulation and heat treatment slowed drug release for the wax matrix-controlled release tablets. Heat treatment of the tablets made by melt granulation further retarded drug release. Heat treatment redistributed the wax, forming a new matrix system with higher tortuosity. The application of melt granulation or heat treatment can successfully retard drug release.  相似文献   

13.
Three processing methods were compared to develop a low dose (0.1%) immediate release tablet. Similar formulations were used to evaluate low shear, high shear, and fluid bed granulation methods. For each granulation process, the drug was dissolved or suspended in the granulating fluid and sprayed into the granulator. Both water and methanol were evaluated as granulating fluids. The low shear granulation was performed in a Patterson-Kelley V-Blender with I-bar. The high shear granulation was performed in a GRAL (top entry impeller) and a Diosna (bottom mounted impeller). Fluid bed granulation was also performed using top-spray. Acceptable content uniformity was obtained using each technology. The type of granulator and granulating solvent affected the granulation particle size distributions and bulk/tap densities. However, the addition of extragranular microcrystalline cellulose minimized the effect of variable granulation properties and allowed similar tablets to be produced from each granulation process.  相似文献   

14.
The objectives of this study were to investigate the properties of poly(vinyl acetate) (PVAc) as a retardant polymer and to study the drug release mechanism of theophylline from matrix tablets prepared by hot-melt extrusion. A physical mixture of drug, polymer, and drug release modifiers was fed into the equipment and heated inside the barrel of the extruder. The cylindrical extrudates were either cut into tablets or ground into granules and compressed with other excipients into tablets. Due to the low glass transition temperature of the PVAc, the melt extrusion process was conducted at approximately 70°C. Theophylline was used as the model drug in this study. Theophylline was present in the extrudate in its crystalline form and was released from the tablets by diffusion. The Higuchi diffusion model and percolation theories were applied to the dissolution data to explain the drug release properties of the matrix systems. The release rate was shown to be dependent on the granule size, drug particle size, and drug loading in the tablets. Water-soluble polymers were demonstrated to be efficient release rate modifiers for this system.  相似文献   

15.
The objectives of this study were to investigate the properties of poly(vinyl acetate) (PVAc) as a retardant polymer and to study the drug release mechanism of theophylline from matrix tablets prepared by hot-melt extrusion. A physical mixture of drug, polymer, and drug release modifiers was fed into the equipment and heated inside the barrel of the extruder. The cylindrical extrudates were either cut into tablets or ground into granules and compressed with other excipients into tablets. Due to the low glass transition temperature of the PVAc, the melt extrusion process was conducted at approximately 70°C. Theophylline was used as the model drug in this study. Theophylline was present in the extrudate in its crystalline form and was released from the tablets by diffusion. The Higuchi diffusion model and percolation theories were applied to the dissolution data to explain the drug release properties of the matrix systems. The release rate was shown to be dependent on the granule size, drug particle size, and drug loading in the tablets. Water-soluble polymers were demonstrated to be efficient release rate modifiers for this system.  相似文献   

16.
The dissolution profiles of some extended release quinidine gluconate products were shown to be dependent on several dissolution medium variables. It was shown that, for a quinidine gluconate wax matrix tablet, the dissolution rate has an unexpected inverse relationship to the solubility as a function of pH. The dissolution rate is also affected by the concentration of chloride ion present in the dissolution medium apparently due to the inhibition of disintegration. It was found that the nature of the anion (inorganic vs. organic) of the dissolution buffer plays a significant role in the release of the drug. Salts of inorganic acids used as part of the buffer system lower the rate of release of quinidine gluconate from wax matrix tablets through an inhibition of disintegration. On the other hand, buffer salts of organic acids do not have any appreciable effect on the disintegration or dissolution of these tablets. Since the concentration of chloride ion in both gastric and intestinal juices is approximately 0.1M, this suggests that the use of a dissolution medium containing chloride ion represents the more appropriate approach when an in-vivo/in-vitro correlation is desired. For all the quinidine gluconate controlled release formulations studied, mechanisms of release are of at least two different types. This makes the selection of a single dissolution medium for in-vivo/in-vitro correlations either improbable or impossible.  相似文献   

17.
The developed knowledge regarding use of twin screw granulators for continuous wet granulation has been primarily limited to immediate release formulations in the literature. The present study highlights an issue previously unreported for wet granulation with twin screw extruders when using formulations containing controlled-release (CR) excipients. Long (3–10?mm), twisted noodle-like granules can be produced in the presence of these excipients that are difficult to control and are anticipated to create complications in downstream unit operations to the granulator. Working with two different CR excipients, METHOCEL? K4M and Kollidon® SR, each blended at different ratios with a mixture of 80% α-lactose monohydrate/20% microcrystalline cellulose, these unique particles were found to be produced in the conveying elements of the extruder, arising from a rolling action at the top of the screw flights. The CR excipients adhesively strengthen the wetted mass, forming this undesired granule shape such that they persisted to the exit of the machine; the shape appeared most strongly affected by screw speed, producing particles of higher aspect ratio as speed was increased. Adjusting the concentration of these CR excipients in the formulation, the flow rate or the type of compression element used in the screws proved ineffective in controlling the problem. Rather, a re-design of the extruder screws was required to prevent generation of these extended-form granules.  相似文献   

18.
《Advanced Powder Technology》2019,30(9):1765-1781
Over the past decade, continuous wet granulation has been emerging as a promising technology in drug product development. In this paper, the continuous high-shear mixer granulator, Lӧdige CoriMix® CM5, was investigated using a low-dose formulation with acetaminophen as the model drug. Design of experiments was deployed in conjunction with multivariate data analysis to explore the granulator design space and comprehensively understand the interrelation between process parameters and critical attributes of granules and tablets. Moreover, several complementary imaging techniques were implemented to unveil the underlying mechanisms of physical and chemical microstructure in affecting the tablet performance. The results indicated that L/S ratio and impeller speed outweighed materials feeding rate in modifying the granule and tablet properties. Increasing the degree of liquid saturation and mechanical shear input in the granulation system principally produced granules of larger size, smaller porosity, improved flowability and enhanced sphericity, which after compression generated tablets with slower disintegration process and drug release kinetics due to highly consolidated physical microstructure. Besides, in comparison to batch mixing, continuous mixing integrated with a conical mill enabled better powder de-agglomeration effect, thus accelerating the drug dissolution with increased surface area.  相似文献   

19.
A “fast-drying” method to accelerate the fluid bed drying process is presented. It relies on concepts of heat and mass transfer with real-time near-infrared (NIR) monitoring of moisture. Triplicate trials show that fast drying can reduce granulation drying time by half over single-temperature cycles. The product is equivalent in every way tested to material made using a conventional cycle even though the inlet temperature throughout the constant-rate stage was higher than the melting point of the compound. Tablets made from the fast-dried granulation exhibit equivalent physical characteristics to tablets made from granulations dried at a single, lower temperature.  相似文献   

20.
Insoluble drugs often formulated with various excipients to enhance the dissolution. Cyclodextrins (CDs) are widely used excipients to improve dissolution profile of poorly soluble drugs. Drug–CD complexation process is complex and often requires multiple processes to produce solid dosage form. Hence, this study explored commonly used granulation processes for simultaneous complexation and granulation. Poorly soluble drugs ibuprofen and glyburide were selected as experimental drugs. Co-evaporation of drug:CD mixture from a solvent followed by wet granulation with water was considered as standard process for comparison. Spray granulation and fluid bed processing (FBP) using drug:CD solution in ethanol were evaluated as an alternative processes. The dissolution data of glyburide tablets indicated that tablets produced by spray granulation, FBP and co-evaporation–granulation have almost identical dissolution profile in water and 0.1% SLS (>70% in water and >60% in SLS versus 30 and 34%, respectively for plain tablet, in 120?min). Similarly, ibuprofen:CD tablets produced by co-evaporation–granulation and FBP displayed similar dissolution profile in 0.01?M HCl (pH 2.0) and buffer pH 5.5 (>90 and 100% versus 44 and 80% respectively for plain tablets, 120?min). Results of this study demonstrated that spray granulation is simple and cost effective process for low dose poorly soluble drugs to incorporate drug:CD complex into solid dosage form, whereas FBP is suitable for poorly soluble drugs with moderate dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号