首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Higher areal density for magnetic recording is needed to provide larger storage capacities on harddisk drives. However, as the recording bit size of traditional magnetic recording materials (such as Co/Cr) approaches 10 nm, the magnetic direction of each recording bit would become unstable at room temperature due to thermal fluctuation. To solve this problem, efforts have been made using two methods: one method is to replace the disk media with new materials possessing higher magnetic anisotropy which would lead to better thermal stability; and the second one is to employ different configurations for the recording layer. FePt with patterned media configuration is a combination of these two methods. In this paper we review some novel and interesting methods of patterning FePt for magnetic recording, including thermal patterning, self-assembly patterning, and lithography patterning.  相似文献   

2.
The current status of the technology of magnetic recording as used in disk drives is reviewed. The emphasis is on the magnetic materials used in the application and on some of the technical problems that may limit the increase in areal density. The new technology of magnetic random access memory (MRAM), which has evolved from the magnetic recording application, is also reviewed. A wide range of magnetic materials is essential for the advance of magnetic recording and the MRAM technology. For the magnetic-recording application the requirements are for high-magnetization, soft magnetic materials for write heads, new antiferromagnetic alloys with high blocking temperatures, large coupling to ferromagnetic films and low susceptibility to corrosion for pinning films in giant magnetoresistive sensors, and for the MRAM application, the requirement is for new ferromagnetic alloys with large values of tunneling polarization ratio. A significant limitation to magnetic recording is found to be the inconsistent demands on media thickness: small media thicknesses are required for large values of signal-to-noise ratio, while large values of thickness are required to reduce the impact of the superparamagnetic effect, which results in the potential for data loss over time. Both of these requirements are discussed. Multilayer ferromagnetic films for recording surfaces are shown to allow both large signal-to-noise ratio and adequate resistance to data loss.  相似文献   

3.
Xiao S  Yang X  Edwards EW  La YH  Nealey PF 《Nanotechnology》2005,16(7):S324-S329
We report a method to fabricate high-quality patterned magnetic dot arrays using block copolymer lithography, metal deposition, and a dry lift-off technique. Long-range order of cylindrical domains oriented perpendicular to the substrate and in hexagonal arrays was induced in the block copolymer films by prepatterning the substrate with topographic features and chemically modifying the surface to exhibit neutral wetting behaviour towards the blocks of the copolymer. The uniformity of the domain size and row spacing of block copolymer templates created in this way was improved compared to those reported in previous studies that used graphoepitaxy of sphere-forming block copolymers. The pattern of block copolymer domains was transferred to a pattern of magnetic metal dots, demonstrating the potential of this technology for the fabrication of patterned magnetic recording media.  相似文献   

4.
在分析传统磁记录在高密度化过程中遇到的困难的基础上,指出了未来超高密度磁存储的方向,着重分析了图案化磁记录(patterned magnetic recording)对介质的要求,并简要介绍了图案化介质的制备技术.  相似文献   

5.
High anisotropy L1(0) ordered FePt thin films are considered to have high potential for use as high areal density recording media, beyond 1 Tera bit/in2. In this paper, we review recent results on the synthesis and magnetic properties of L1(0) FePt nanocomposite films. Several fabrication methods have been developed to produce high-anisotropy FePt films: epitaxial and non-epitaxial growth of (001)-oriented FePt:X (X = Au, Ag, Cu, C, etc.) composite films that might be used for perpendicular media; monodispersed FePt nanocluster-assembled films grown with a gas-aggregation technique and having uniform cluster size and narrow size distribution; self-assembled FePt particles prepared with chemical synthesis by reduction/decomposition techniques, etc. The magnetic properties are controllable through variations in the nanocluster properties and nanostructure. FePt and related films show promise for development as heat-assisted magnetic recording media at extremely high areal densities. The self-assembled FePt arrays show potential for approaching the ultimate goal of single-grain-per-bit patterned media.  相似文献   

6.
Previous reports have detailed the fabrication of media able to support high density magnetic recording in both longitudinal and perpendicular formats by the global rapid thermal processing of sputtered non-magnetic precursor films. During processing in this manner a magnetic element is released from its nitride and agglomerates to form a random near mono-dispersion of magnetic nano-particles. Here we explore, primarily through modelling and simulation, the feasibility of processing similarly formulated precursor media not globally but locally. We investigate the potential of using conducting nano-probe tips to produce, via electro-thermal (Joule) heating, a nano-patterned recording medium in the form of regular arrays of magnetic islands in a non-magnetic host. In the first instance we concentrate on the simplest cobalt based precursor medium for which both initial simulation and experimental studies indicate the formation of magnetic islands with dimensions of the order of the tip diameter; this is relatively straightforward. The results signify that if practical production scenarios can be devised to produce technologically significant areas of recording media by the rapid multi-probe repetition of this technique, then processing in this manner offers a promising route to areal recording densities of perhaps 5 Terabit/in(2) even with the simplest cobalt media. We also note that the electro-thermal processing method is potentially extendable to the production of a wide variety of magnetic materials (e.g.?PtCo, FeCo, NiFe alloys) and, applied via electrical nano-imprinting type techniques, to the production of a wide variety of patterned structures.  相似文献   

7.
Thermal effect limits in ultrahigh-density magnetic recording   总被引:4,自引:0,他引:4  
In current longitudinal magnetic recording media, high areal density and low noise are achieved by statistical averaging over several hundred weakly coupled ferromagnetic grains per bit cell. Continued scaling to smaller bit and grain sizes, however, may prompt spontaneous magnetization reversal processes when the stored energy per particle starts competing with thermal energy, thereby limiting the achievable areal density. Charap et al. have predicted this to occur at about 40 Gbits/in2. This paper discusses thermal effects in the framework of basic Arrhenius-Neel statistical switching models. It is emphasized that magnetization decay is intimately related to high-speed-switching phenomena. Thickness-, temperature- and bit-density dependent recording experiments reveal the onset of thermal decay at “stability ratios” (KuV/KBT)0 ≃35 ± 2. The stability requirement is grain size dispersion dependent and shifts to about 60 for projected 40 Gbits/in 2 conditions and ten-year storage times. Higher anisotropy and coercivity media with reduced grain sizes are logical extensions of the current technology until write field limitations are reached. Future advancements will rely on deviations from traditional scaling. Squarer bits may reduce destabilizing stray fields inside the bit transitions. Perpendicular recording may shift the onset of thermal effects to higher bit densities. Enhanced signal processing may allow signal retrieval with fewer grains per bit. Finally, single grain per bit recording may be envisioned in patterned media, with lithographically defined bits  相似文献   

8.
Recent advance of magnetic recording technology has resulted in tremendous increase in area densities. Several new components were developed: Thin film media, and thin film head in longitudinal recording; Single-layer media, double-layer media, and probe head in perpendicular recording. A variety of head and media combinations become possible, and each has a different degree of head-media coupling. The soft magnetic underlayer in double-layer perpendicular media has such a strong coupling with the head that the head and media must be treated as a single entity in the analysis. The evaluation of only a head or a medium without knowing its counterpart could be quite misleading. Optimization of head-media coupling to select the most suitable combination becomes a key factor in designing a high density recording system. We will review the recording and reproducing processes from both the theoretical and experimental aspects for all the head-media structures which have some practical interest.  相似文献   

9.
王海成  张恩  王立锦  于广华 《功能材料》2012,43(9):1217-1220
采用化学湿法沉积制备了Co-Ni-P磁性薄膜,研究了工艺条件对其磁性的影响,并对其作为磁旋转编码器磁鼓记录介质的记录特性进行了分析。研究结果表明,薄膜矫顽力和矩形比随施镀时间增加而下降。当施镀时间为3min时,Co-Ni-P薄膜矫顽力可达42506.4A/m,矩形比为0.55。X射线衍射及扫描电镜结果表明,随施镀时间增加,薄膜矫顽力下降,晶粒尺寸变大,并发生明显的择优取向。将化学沉积Co-Ni-P薄膜应用于磁旋转编码器的磁鼓记录介质,记录特性测试结果表明,输出信号良好,脉冲计数完整,波形良好,可完整写入2048对磁极。化学沉积Co-Ni-P磁性薄膜适合于高精度、高分辨率的磁旋转编码器的磁鼓记录材料。  相似文献   

10.
We report a novel nanomanufacturing technique that incorporates patterned arrays built entirely from Fe?O? nanoparticles into a flexible and transparent polymer film. First, the nanoparticles are patterned using the enormous magnetic field gradients at the surface of commercial disk drive media, and then the resulting architecture is transferred to the surface of a polymer film by spin-coating and peeling. Since the particles are immobilized by the field gradients during the spin-coating process, the patterned array is preserved after peeling. To demonstrate the potential of this technology, we fabricate a 5 mm diameter all-nanoparticle diffraction grating capable of producing a white-light optical spectrum. We also demonstrate several extensions to this technology, where, by adding an external magnetic field during assembly, we create both periodic variations in topography, as well as a nanocomposite with two vertically and horizontally separated nanoparticle layers. As this technique leverages the nanometer resolution inherent in current magnetic recording technology, strong potential exists for low-cost nanomanufacturing of optical and electronic devices from a variety of nanomaterials with ~10 nm resolution.  相似文献   

11.
Longitudinal recording is limited at high bit densities by recording demagnetization, self-demagnetization, and adjacent-bit demagnetization, which occur during the writing-demagnetization processes. To minimize these adverse effects it becomes necessary to resort to extreme scaling of the media parameters and their thickness, with the consequence of greatly increasing the difficulty of fabrication and the cost of such optimized media. Pure perpendicular recording circumvents these writing and demagnetization problems because of the strong head coupling of a single pole head with a double layer medium, positive interaction between adjacent bits, and low self-demagnetization at high bit densities. Therefore, it does not require any extreme scaling of the media magnetic parameters and their thickness. Of great interest, at least for the next several years, are the quasi-perpendicular particulate media which can support perpendicular magnetization. These include the isotropic, high-squareness media, and oriented perpendicular media employing particles with uniaxial crystalline or shape anisotropies. The attractiveness of these media derives from their excellent recording performance and from the fact that they preserve the existing head/media interface and they utilize existing coating facilities which should reflect favorably on their cost. In this paper the advantages and disadvantages of the various media under development for high density magnetic recording are compared, and predictions are made for their potential application in future systems.  相似文献   

12.
Magnetoresistive playback off bit patterned magnetic recording media is studied. Three playback configurations are compared: not shielded sensors, shielded sensors commonly used in magnetic recording systems, and shielded differential sensors. Influence of patterned medium parameters including bit-filling ratio, bit shape, bit position jitter, bit-size variation on the playback signal is studied. Playback signal amplitude, D50, and signal-to-noise ratio are used to compare different playback sensor configurations. It is found that in general, shielded differential readers offer superior performance as compared to both shielded single sensor readers and not shielded readers.  相似文献   

13.
The continuing scaling of magnetic recording is facing more and more scientific and technological challenges because both the read sensor and recording bit are approaching sub-50 nm regime with the ever increasing areal density in hard disk drives. One of the key and indispensable elements for both high-sensitivity sensors and high-density media is the exchange bias between a ferromagnetic and an antiferromagnetic layer or the exchange coupling between two ferromagnets via a non-magnetic spacer. In the nanometer regime, the exchange coupling between ferromagnet and antiferromagnet or two ferromagnets through a conductive spacer is governed by the intergrain exchange interaction which has its origin in electron spins. Interlayer exchange coupling in multilayer or trilayer essentially originates from the quantum confinement effect. In this paper, we first review the physical origin and various theoretical models of the two types of exchange couplings, followed by a review of the applications of the exchange bias and interlayer exchange coupling in data storage with emphasis on the advanced read sensor and advanced media including perpendicular media and patterned media.  相似文献   

14.
We report on the recording performance of discrete track patterned media fabricated by focused ion beam (FIB). We investigated performance over a small area by spinstand read/write testing. Discrete track patterned regions show smaller magnetic track width and better signal separation between adjacent tracks and therefore higher track density than that of nonpatterned continuous media as a result of reduced side fringe effect and edge noise. We found that, at a designed groove depth of 4-8 nm, the shallow FIB etched grooves already provide good isolation between adjacent tracks, indicating the superiority of ion beam induced modification of magnetic properties in film media over physical modification of disk surface topography. This has implications for discrete track recording and media fabrication.  相似文献   

15.
The vacuum deposition of ferromagnetic material at oblique incidence will become a major production technology for magnetic tapes for longitudinal recording applications in the future. In this paper the general formation mechanism of magnetic thin films, the field of relevant parameters and the dependance of magnetic properties on the essential parameters is discussed and demonstrated by a few examples of hysteresis loops: The resulting layout of laboratory and pilot production equipment developed so far for this application is demonstrated. For typical application examples, the material efficiency of the systems has been calculated as a function of the used incidence angle range. Also the differential increase in layer thickness as a function of incidence angle has been calculated in order to get a simple model for the formation of microcolumns.  相似文献   

16.
Many view data storage on patterned magnetic media as one way of attaining storage densities in excess of 1 Tb/in/sup 2/ and thus overcoming the problems associated with recording at ultrahigh densities on conventional continuous media. In this paper we investigate, through the use of a replay simulation developed to take into account the three-dimensional nature of the patterned media, the effects that the shape-constrained media have on the bit-error-rate performance of the read channel in 1-Tb/in/sup 2/ perpendicular recording. In particular, we analyze how media configurations with varying island shape, size, and distribution affect the channel performance.  相似文献   

17.
Discrete track media offers many potential recording advantages over conventional continuous media in hard disk drives. In this study, we present a novel fabrication process for discrete track perpendicular magnetic media via electron beam lithography, ion milling, and the use of a protective Al sacrificial layer. Physical characterization of the media confirms the process is able to produce patterned tracks with no damage to the media. Spin stand analysis verifies the disks are flyable and capable of recording sharp transitions without any degradation in the magnetic signal  相似文献   

18.
A simplified view of magnetic recording is presented in which the effect of head-medium geometry is clearly exhibited. The model is applied to contact recording with a ring head on thick particulate media. Demagnetization fields are neglected and identical particles with angularly invariant switching fields are considered with various orientation distributions in the recording plane. For all orientation distributions symmetric about the longitudinal direction the longitudinal magnetization component vanishes at the head surface and increases with depth into the medium. Conversely, the vertical component is maximum at the head surface and decreases with depth. The resulting recording spectra therefore have greater magnitudes for vertically well-oriented particles and isotropic distributions of particles with biaxial symmetry. At short wavelengths these distributions give approximately 5 dB more output than longitudinally well-oriented media. The depth variation of longitudinal magnetization also provides one explanation for the peak in the short wavelength input-output curve measured on longitudinal media. These conclusions are expected to be dependent on the assumed angular variation of the particle nucleation field.  相似文献   

19.
By comparing the analyses of magnetic recording media noise and shot noise, this paper shows that a very close analogy exists between the two. It demonstrates that all the well-known results for both kinds of noise are caused by random processes that have equal probabilities in equal volumes.  相似文献   

20.
The relation between the incident angle and the crystallographic orientation of a vacuum deposited Co-Cr film is discussed. Also presented are the magnetic properties and the orientation of both a Ni-Fe underlayer and the Co-Cr film for the double layer medium, and the experimental results about the composition distribution in the co-cr film. The films were deposited on a transporting polymer substrate by continuous vacuum deposition. It is found that the orientation of the Co-Cr film is determined only by the incident angle at the initial point of the film formation, and that deposition efficiency more than 50% can be achieved easily. A double layer medium with Ti film under the Ni-Fe film (Co-Cr/Ni-Fe/Ti medium), which is suitable for perpendicular magnetic recording, is produced by vacuum deposition. Auger depth profile in radial direction of the column of the Co-Cr film shows directly that there is Cr segregation near the columnar grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号