首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了制备一种轻质隔声复合材料,以氧化石墨烯(GO)为隔声填料,通过熔融共混法制备了GO/丁腈橡胶-聚氯乙烯(GO/NBR-PVC)复合材料。采用SEM、XRD、DMA和万能材料试验机等对GO/NBR-PVC的结构形态、弹性模量和力学性能等进行测试;利用四通道阻抗管系统对隔声性能进行测试。结果表明,GO在NBRPVC基体中分散均匀;GO/NBR-PVC的拉伸强度、弹性模量和阻尼性能明显增大。隔声测试结果表明:GO的添加可以提高GO/NBR-PVC的隔声性能,尤其在低频段。当GO的质量分数分别为0.1%、0.2%、0.3%、0.4%时,复合材料面密度几乎不变,隔声指数分别提高了0.8dB、1.1dB、1.5dB、1.2dB;而添加质量分数为30%的重质金属(HM)时,HM/NBR-PVC面密度明显提高,而隔声指数只提高了0.6dB。  相似文献   

2.
为了研究氧化石墨烯(GO)对聚合物基复合材料力学性能的影响,通过溶液混合法制备了GO/聚乙烯醇(PVA)复合材料。然后,采用XRD、TEM、FTIR、DSC和纳米压痕实验等研究了GO/PVA复合材料的结构、界面结合性能、力学性能、蠕变行为和吸水膨胀率。结果表明:GO可以均匀分散在PVA基体中,二者之间主要通过氢键作用结合,具有较高的界面结合力;与纯PVA相比,1wt% GO/PVA复合材料的硬度和有效弹性模量分别提高了28.9%和23.3%,压入蠕变深度下降了19.8%;GO/PVA复合材料具有较低的无限剪切模量与瞬时剪切模量比,表明GO提高了PVA的蠕变抗力;GO的添加同时增加了GO/PVA复合材料的阻水性并降低了膨胀系数。吸湿纳米压痕实验结果表明:纯PVA的力学性能会随吸湿时间延长而下降,而GO/PVA复合材料吸湿72h后的力学性能基本保持不变。所得结论为石墨烯增强聚合物基复合材料的研究提供了理论指导。   相似文献   

3.
采用不同含量的硅烷偶联剂γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)对石墨烯(GE)进行改性,将改性GE(KH-GE)与聚氯乙烯(PVC)进行熔融混炼制备KH-GE/PVC复合材料。通过FTIR、Raman、XRD、TEM和SEM表征改性前后GE结构变化,并考察了KH-GE/PVC复合材料的力学性能、导电性能及稳定性能。结果表明,GE∶KH570质量比为1∶2时,KH-GE的层间距较大,改善了GE的团聚,使GE在PVC基体中的分散得到了改善。随着KH-GE含量的增加,KH-GE/PVC复合材料的力学性能显著提高,当KH-GE质量分数为1.5wt%时,KH-GE/PVC复合材料的拉伸强度和断裂伸长率分别为23.98 MPa和226.78%,比未添加KH-GE的PVC复合材料分别提高了51.1%和65.73%;相对于纯PVC,当KH-GE质量分数为1.5wt%时,对应的50%热失重(T50%)及90%热失重(T90%)分别从289.81℃和486.01℃提高到298.51℃和596.53℃,提高了KH-GE/PVC复合材料的热稳定性,导电性也显著提高。  相似文献   

4.
Here, reduced graphene oxide (rGO) was modified with iron and platinum nanoparticles by solvothermal method. The structural order and textural properties of the graphene based materials were studied by BET, TEM, XRD, TGA and XPS techniques. Hydrogen storage properties of GO, platinum loaded reduced graphene oxide (Pt-rGO), iron loaded reduced graphene oxide (Fe-rGO), and iron platinum loaded reduced graphene oxide (FePt-rGO) have been investigated in the pressure range of 0.05 to atmospheric pressure and at 77 and 87 K. This gives hydrogen adsorption capacities of about 1.2, 2.1, 1.9, and 2.7 wt% at 77 K for GO, Pt-rGO, Fe-rGO, and FePt-rGO, respectively. The isosteric heat of adsorption (Qst) was investigated as a function of hydrogen uptake at 77 and 87 K over the pressure range of 0.05 to atmospheric pressure. The isosteric heat of adsorption for FePt-rGO (9.2 kJ/mol) was found to be higher than the isosteric heat of adsorption for GO (6.1 kJ/mol) indicating a favorable interaction between hydrogen and surface of the reduced graphene oxide.  相似文献   

5.
Fabrication of graphene/ceramic composites commonly requires a high-temperature sintering step with long times as well as a vacuum or inert atmosphere,which not only results in property degradation but also significant equipment complexity and manufacturing costs.In this work,the ambient flash sintering behavior of reduced graphene oxide/3 mol% yttria-stabilized ZrO2(rGO/3 YSZ) composites utilizing rGO as both a composite component and a conductive additive is reported.When the sintering condition is carefully optimized,a dense and conductive composite can be achieved at room temperature and in the air within 20 s.The role of the rGO in the FS of the rGO/3 YSZ composites is elucidated,especially with the assistance of a separate investigation on the thermal runaway behavior of the rGO.The work suggests a promising fabrication route for rGO/ceramic composites where the vacuum and furnace are not needed,which is of interest in terms of simplifying the fabrication equipment for energy and cost savings.  相似文献   

6.
陈中华  王建川  余飞  张正国  高学农 《功能材料》2015,(1):1125-1128,1134
首先采用Hummers法制备出氧化石墨烯(GO),然后与三聚氰胺、甲醛进行原位聚合,制备出GO/密胺树脂(MF)复合材料,并用傅里叶红外光谱仪(FT-IR)、原子力显微镜(AFM)、扫描电镜(SEM)分析和观察了氧化石墨烯及复合材料的分子结构及形貌,通过导热系数测试仪、热重分析仪(TG)对复合材料的热性能进行了表征。研究发现,随着氧化石墨烯(GO)添加量的增加,复合材料导热系数增加先快后慢,当GO添加量为0.84%时,复合材料导热系数提高32.0%,GO的添加提高复合材料低温下的热稳定性。  相似文献   

7.
氧化石墨烯(GO)是石墨烯重要的衍生物之一,通过氧化和超声波分散制备了GO纳米片/环氧树脂复合材料。采用XRD、拉曼光谱、FTIR和TEM表征了GO纳米片的结构与形貌,研究了GO纳米片用量对GO纳米片/环氧树脂复合材料热稳定性、力学性能及介电性能的影响。结果表明:GO纳米片的加入提高了GO纳米片/环氧树脂复合材料失热稳定性;随着GO纳米片填充量的增加,GO纳米片/环氧树脂复合材料的冲击强度和抗弯性能先提高后降低,其介电常数和介电损耗则先减小后增加。GO纳米片填充量为0.3wt%的GO纳米片/环氧树脂复合材料的失重5%时的热分解温度由纯环氧树脂的400.2℃提高到424.5℃,而冲击强度和弯曲强度分别在GO纳米片填充量为0.2wt%和0.3wt%时达到最大,冲击强度由纯环氧树脂的10.5kJ/m2提高到19.7kJ/m2,弯曲强度由80.5 MPa提高到104.0 MPa。  相似文献   

8.
采用超声辅助Hummers法制得厚度约为1 nm的氧化石墨烯, 以其为氧化介质与苯胺反应合成了石墨烯/聚苯胺(RGO/PANI)导电复合材料。利用AFM、SEM、XRD和FTIR对反应所得产物进行了表征。结果表明: 苯胺在略高于室温的酸性水溶液中可以对氧化石墨烯(GO)进行还原, 而苯胺自身则被氧化石墨烯中大量的含氧基团氧化并发生聚合反应, 最终生成RGO/PANI导电复合材料, 当苯胺用量为1 mL, 氧化石墨烯用量为0.1 g, 在水浴温度为70 ℃下剧烈搅拌24 h时, 获得的RGO/PANI复合材料导电性最佳, 约为10 S/cm。  相似文献   

9.
用改良的Hummers法制备出氧化石墨烯(GO),再通过溶液共混,逐步升温固化制备得到GO/呋喃树脂复合材料。利用FTIR、XRD和SEM对GO/呋喃树脂复合材料的微观结构和形貌进行表征,同时对其黏度、玻璃化转变温度、热分解温度、残炭率及硬度进行了检测。结果表明,GO较均匀地分散于呋喃树脂基体中,且两者界面相容性较好。GO/呋喃树脂复合材料的热性能和力学性能相对于纯树脂都有一定的提高。与纯呋喃树脂相比,当GO的添加量为0.3wt%时,GO/呋喃树脂复合材料的玻璃化转变温度提高了36℃,热失重5%时的温度提高了16℃;当GO的添加量为0.1wt%时,GO/呋喃树脂复合材料的残炭率从50.7%提高到53.9%,邵氏硬度从90提高到97。  相似文献   

10.
通过销盘试验分析氧化石墨烯(GO)、聚乙二醇(PEG)和不同比例的GO/PEG复合材料的摩擦学性能,考察GO增强PEG在人工关节材料UHMWPE-CoCrMo配副上的润滑效果,并利用FTIR、XRD、拉曼光谱等研究了GO/PEG复合材料的结构和性能。结果表明:混合比例为0.85wt%GO与40wt%PEG的GO/PEG复合材料在4.2 MPa加载载荷、0.024m/s的滑动速度条件下,平均摩擦系数为0.015,具有良好的润滑效果;GO均匀地分散在PEG溶液中,组分间较强的界面相互作用协同增强了GO/PEG复合材料的润滑性能。  相似文献   

11.
Composites of poly(vinyl alcohol) (PVA) and graphene oxide (GO) were synthesized by a modified Hummers method and a solution-mixing method. GO was fully exfoliated in the PVA/GO composites. GO did not affect the crystallization of PVA during solvent evaporation. GO is itself an excellent gas barrier without any chemical reduction. The oxygen permeability of the PVA/GO (0.3 wt.%) composite coated film was 17 times lower than that of the pure poly(ethylene terephthalate) (PET) film, with 92% light transmittance at 550 nm. Composites of PVA and reduced graphene oxide (RGO) were synthesized by performing chemical reduction using hydrazine monohydrate. The oxygen permeability of the PVA/RGO (0.3 wt.%) composite coated film was 86 times lower than that of the pure PET film, with 73% light transmittance at 550 nm. The reduction of oxygen permeability was mainly attributed to the reduced oxygen solubility in the PVA/GO composite film, while it was attributed to both the reduced oxygen diffusivity and solubility in the PVA/RGO composite film.  相似文献   

12.
采用Ar氛烧结碳化法在600℃、700℃、800℃及900℃下制备了基于氧化石墨烯(GO)/壳聚糖复合材料的超级电容器电极材料。通过XRD、SEM、FTIR及循环伏安等电化学手段,系统评价了碳化的GO/壳聚糖复合材料作为超级电容器电极材料的可能性。通过与文献报道的纯壳聚糖碳化材料的相关性能进行比较,结果表明:碳化GO/壳聚糖复合材料力学性能较纯壳聚糖碳化材料提高约67%,而且具有良好的电容器材料的性质。800℃碳化GO/壳聚糖复合材料样品的比电容达131 F/g,1 500次充放电后比电容保持率达97%。  相似文献   

13.
石墨烯/氰酸酯-环氧树脂复合材料的制备和性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为优化石墨烯/氰酸酯(CE)复合材料的制备工艺并提高其韧性,制备了对苯二胺(PPD)功能化的氧化石墨烯(GO-PPD),分别以GO和GO-PPD为添加物,以CE和环氧树脂(质量比为7:3)共混物为基体树脂制备了GO/CE-环氧树脂和GO-PPD/CE-环氧树脂复合材料。采用红外和拉曼光谱表征GO和GO-PPD的结构,并研究了二者在溶剂中的溶解性。GO-PPD在乙醇等低沸点和低毒性的有机溶剂中表现出稳定的溶解性,与GO相比,GO-PPD明显改善了复合材料制备的工艺性。性能研究表明,GO和GO-PPD的加入均会降低基体树脂的固化温度,明显提高其力学性能和热性能,使基体树脂的介电常数和介电损耗显著增大,但仍然基本保持良好的耐湿热性和耐腐蚀性。石墨烯表面的化学性质影响石墨烯/CE-环氧树脂复合材料的综合性能,与GO相比,GO-PPD的加入能更明显提高复合材料的力学性能和耐热性。  相似文献   

14.
以天然鳞片石墨为原料制备氧化石墨烯(GO),通过Zn将其还原为石墨烯(RGO),且生成的ZnO附着在RGO表面。采用XRD、SEM、FTIR、Raman、TEM和矢量网络分析仪(VNA)研究了不同还原温度对ZnO/RGO复合材料形貌、结构、氧化程度、电磁损耗特性、德拜弛豫模型及电磁响应行为的影响。结果表明:还原温度为50℃时RGO还原后结构更加完整,层间距为0.89 nm时ZnO/RGO复合材料的介电常数和磁导率均较高,在17.15 GHz时反射率达到-41.2 dB,反射损耗小于-10 dB的带宽为3.67 GHz。   相似文献   

15.
以漆酚、糠胺和多聚甲醛为原料合成了新型的漆酚型苯并噁嗪(UB),对其结构进行了表征。进而将硅烷化氧化石墨烯(SGO)与UB和双马来酰亚胺共混,热固化制得SGO/漆酚型苯并噁嗪-双马来酰亚胺共聚树脂(UBB)复合材料。利用FTIR、XRD和SEM对SGO/UBB复合材料的结构和形貌进行了表征,结果表明,SGO均匀地分散、交联在UBB中,且两者界面相容性较好。SGO可显著提高UBB的热稳定性和力学性能。当SGO的添加量为0.5wt%时,SGO/UBB的热失重5%时的温度和残炭率(800℃)分别为441.2℃、44.3%,远高于纯UBB (399.0℃、39.2%)。当SGO的添加量为0.3wt%时,SGO/UBB的杨氏模量和拉伸强度相比纯UBB分别增加了115.4%、309.9%,分别达962.8 MPa和29.1 MPa。SGO/UBB复合材料具有低的吸水性。  相似文献   

16.
为了提高热塑性聚氨酯(TPU)的阻隔性能,首先,采用溶液成型的方法在涂膜机上制备了功能氧化石墨烯(IP-GO)/TPU复合材料薄膜。然后,利用FTIR、XPS、XRD、FE-SEM、原子力显微镜和氧气透过仪对IP-GO/TPU复合材料的形貌和性能进行了表征。结果表明:IP-GO层间距相对原始鳞片石墨的增加了0.696nm,片层的厚度为1.2nm左右。IP-GO以褶皱层状的形式均匀分散在TPU基体中,并且包覆在复合材料薄膜断口表面。当IP-GO含量为3wt%时,IP-GO/TPU复合材料薄膜的氧气透过率为84.325cm3/(m2·d·Pa),相比纯TPU薄膜的280.973cm3/(m2·d·Pa)下降了70%,阻隔性能明显提高。研究解决了TPU薄膜阻隔性能不佳的问题,为高阻隔聚合物的制备提供了一种思路和方法。  相似文献   

17.
周晓明  王格 《复合材料学报》2017,34(9):1887-1894
以天然石墨为原料,利用改进的HUMMERS'法制备了氧化石墨烯(GO);采用原位复合方式制备了纳米氧化石墨烯/聚丁二酸丁二醇酯(GO/PBS)复合材料,并对其性能进行了研究。结果表明:适量GO的加入能更有效地加快GO/PBS复合材料的结晶速度;GO的加入,提高了GO/PBS复合材料的力学性能和酶降解速率;随着GO添加量的增加,复合材料晶体尺寸减小,GO起到了成核剂的作用。  相似文献   

18.
主要研究熔融加工工艺对石墨烯在聚偏氟乙烯(PVDF)中的分散及导电、导热性能的影响。首先通过高速混合机机械搅拌,使石墨烯微片、助剂与PVDF粉料均匀分散,然后分别经由熔融模压、双辊辊压、双辊混炼、双螺杆挤出和密炼等工艺制备得到PVDF/石墨烯复合材料。利用SEM和TEM研究复合材料的微观形貌,并研究不同熔融制备工艺及石墨烯含量对复合材料导电性能、导热性能及热力学性能的影响。结果表明,采用高速混合、合适的助剂体系和熔融工艺,可以得到石墨烯分散良好的复合材料;经定向分散熔融制备工艺所得的复合材料导电性能和导热性能均优于不定向分散熔融工艺所得的复合材料;石墨烯的加入,可以改善复合材料的热力学稳定性,提高复合材料的结晶温度。  相似文献   

19.
利用硅烷偶联剂(APTES)对氧化石墨烯(GO)进行功能化改性, 在不同的试验条件下制备了3种硅烷偶联剂功能化GO(APTES-g-GO)纳米填料, 并经熔融共混制备了APTES-g-GO填充改性的聚苯乙烯(PS)复合材料。为了改善复合材料的界面作用, 采用马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)为增容剂。分别采用FTIR、XRD、TG、SEM以及拉伸和冲击测试对填料和纳米APTES-g-GO/POE-g-MAH/PS复合材料的结构和性能进行了表征和测试。结果表明:APTES已成功接枝于GO的表面上。接枝过程中, APTES对GO有一定的剥离和还原作用。随着填料含量的增加, 纳米APTES-g-GO/POE-g-MAH/PS复合材料拉伸强度和冲击强度均先上升后下降。当填料与基体质量比为0.75%时, 3种复合材料的拉伸强度和冲击强度都达到最大值, 其中纳米AS-GO/POE-g-MAH/PS复合材料的综合性能最好, 其拉伸强度和冲击强度比POE-g-MAH/PS分别提高了19%和 31%。共混过程中, APTES-g-GO与POE-g-MAH之间的反应改善了纳米APTES-g-GO/POE-g-MAH/PS复合材料的界面相互作用。APTES-g-GO均匀分散于复合材料中, 它的加入提高了复合材料的热稳定性能。添加AS-GO填料的复合材料热稳定性能提高最为明显, 含0.75% AS-GO的纳米AS-GO/POE-g-MAH/PS复合材料的最大失重温度比POE-g-MAH/PS提高了7 ℃。   相似文献   

20.
片状聚吡咯/氧化石墨烯复合材料的制备及电化学性能   总被引:1,自引:0,他引:1  
通过原位聚合在低温条件下(-10℃)制备具有片状微结构的聚吡咯(PPy)/氧化石墨烯(GO)复合材料,利用傅里叶红外光谱仪(FT-IR),扫描电子显微镜(SEM)对复合材料进行结构表征的基础上,利用循环伏安(CV)、恒流充放电(GC)、电化学阻抗技术(EIS)测试复合材料的电化学性能。FT-IR结果表明复合材料中GO与PPy存在相互作用;SEM结果表明复合材料显示为亚微米片状结构形貌;CV、GC、EIS电化学分析表明,与纯聚吡咯及氧化石墨烯相比,复合材料显示出优越的电容特性。当电流密度保持在1 A/g时,复合材料的比电容可达319 F/g,比GO(9 F/g)和PPy(167 F/g)的比电容都要高,该复合材料可用作潜在的超级电容器电极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号