共查询到20条相似文献,搜索用时 0 毫秒
1.
It is well known that standardised tension–tension fatigue test specimens of unidirectional (UD) glass-fibre-reinforced plastics (GFRP) laminates tend to fail at end tabs. The true fatigue life is then underestimated. The first objective of this study was to find for UD GFRP laminates a test specimen that fails in the gauge section. The second objective was to compare fatigue performance of two laminates, one having a newly developed UD powder-bound fabric as a reinforcement and the other having a quasi-UD stitched non-crimp fabric as a reinforcement. In the first phase, a rectangular specimen in accordance with the ISO 527-5 standard and two slightly different dog-bone shaped specimens were evaluated by means of finite element modelling. Subsequent comparative fatigue tests were performed for the laminates with the three specimen types. The results showed that the test specimen type has a significant effect on the failure mode and measured fatigue life of the laminates. A significantly higher fatigue life was measured for the laminate with the powder-bound fabric reinforcement when compared to the laminate with the stitched reinforcement. 相似文献
2.
Xing Zhao Xin Wang Zhishen Wu Thomas Keller Anastasios P. Vassilopoulos 《Journal of Materials Science》2018,53(13):9545-9556
The tension–tension fatigue behavior and damage mechanism of basalt fiber-reinforced epoxy polymer (BFRP) composites at different stress ratios are studied in this paper. The fatigue experiments were performed under stress ratios, R?=?σmin/σmax of 0.1 and 0.5, while the lifetime and the stiffness degradation were monitored and analyzed to investigate the effect of stress ratios. The damage propagation during fatigue loading was periodically monitored by using an in situ scanning electron microscope (SEM). The results show that the fatigue life decreases and the fatigue life degradation rate increases with the decrease of stress ratio for examined BFRP composites. The stiffness degradation is also sensitive to different stress ratios, showing a greater stiffness loss before failure at lower stress ratio. From the SEM images, it is indicated that the micro-damage mode shifts from interface debonding and matrix cracking into fiber breaking with decreasing stress ratios. 相似文献
3.
The tensile fatigue behavior of unidirectional carbon fiber-reinforced thermoplastic and thermosetting laminates was examined at room temperature. Tension-tension cyclic fatigue tests were conducted under load control at a sinusoidal frequency of 10 Hz to obtain stress-fracture cycles (S-N) relationship. The fatigue limits of carbon fiber-reinforced thermoplastic laminates (CF/PA6) and thermosetting laminates (CF/Epoxy) were found to be 28.0 MPa (48% of the tensile strength) and 56.2 MPa (63% of the tensile strength), respectively. Two types (in constant and incremental loading way) of loading-unloading low cycle fatigue tests were employed to investigate the modulus history of fatigue process for announcing the fatigue mechanism. The residual tensile strength of specimens that survived fatigue loading maintained with the increase of fatigue cycles and applied stress. Examination of the fatigue-loaded specimens revealed that the more flexible/ductile trend of resins and the formation of micro-cracks at the interface between fiber and matrix was facilitated during high fatigue loading (⩾fatigue limit stress), while no interfacial/matrix damage in resins was detected during low fatigue loading (<fatigue limit stress), which was consider to be the governing mechanism of strength maintain during fatigue loading. 相似文献
4.
The failure behavior and morphology of a carbon–carbon composite (C–C composite) manufactured by isothermal chemical vapor infiltration was studied by three-point bending tests, polarized light microscope and scanning electron microscope, respectively. The C–C composite was reinforced by PAN-based carbon fiber aligned in only one direction. Flexural strength and modulus of the composite were 200.9 MPa and 50.5 GPa, respectively. Failure behavior of the unidirectional C–C composite can be described as three stages including brittle fracture behavior at beginning, quasi-ductile behavior finally, and fluctuation behavior between them. Two main kinds of cracks, namely cracks parallel and perpendicular to loading direction alternately resulted in deformation evolution of the composite. The strength of interfacial bonding and cracks orientation played key roles to failure behavior of C–C composite. 相似文献
5.
Fiber-reinforced polymer–matrix composites are known to exhibit loading rate- and time-dependent mechanical response. Their
fatigue strength is determined by a complex interaction of damage processes governed by loading duration and cycle number.
Apart from mechanistic approaches, a number of empirical models of various sophistication have been proposed to predict the
durability of composites, differing in the amount of experimental data needed for their application. The accuracy of several
such models is evaluated by comparing the prediction to the experimentally determined stress ratio effect on fatigue life
of glass fiber-reinforced polyester–matrix composite. It is found that the accuracy of prediction generally improves with
increasing the amount of test data needed for model calibration. However, the most accurate method of fatigue life estimation,
among the selected ones, is by the modified Goodman diagram. 相似文献
6.
Crack growth behavior of aluminum alloy 7075-T6 was investigated under in-plane biaxial tension–tension fatigue with stress ratio of 0.5. Two biaxiality ratios, λ (=1 and 1.5) were used. Cruciform specimens with a center hole, having a notch at 45° to the specimen’s arms, were tested in a biaxial fatigue test machine. Crack initiated and propagated coplanar with the notch for λ = 1 in L–T orientation, while it was non-coplanar for λ = 1.5 between L–T and T–L orientations. Uniaxial fatigue crack growth tests in L–T and T–L orientations were also conducted. Crack growth rate in region II was practically the same for biaxial fatigue with λ = 1 in L–T orientation and for the uniaxial fatigue in L–T or T–L orientations, while it was faster for biaxial fatigue with λ = 1.5 at a given crack driving force. However, fatigue damage mechanisms were quite different in each case. In region I, crack driving force at a given crack growth rate was smallest for biaxial fatigue with λ = 1.5 and for uniaxial fatigue in T–L orientation, followed by biaxial fatigue with λ = 1 and uniaxial fatigue in L–T orientation in ascending order at a given crack growth rate. 相似文献
7.
Time–temperature–stress superposition principle (TTSSP) was widely applied in studies of viscoelastic properties of materials. It involves shifting curves at various conditions to construct master curves. To extend the application of this principle, a temperature–stress hybrid shift factor and a modified Williams–Landel–Ferry (WLF) equation that incorporated variables of stress and temperature for the shift factor fitting were studied. A wood–plastic composite (WPC) was selected as the test subject to conduct a series of short-term creep tests. The results indicate that the WPC were rheologically simple materials and merely a horizontal shift was needed for the time–temperature superposition, whereas vertical shifting would be needed for time–stress superposition. The shift factor was independent of the stress for horizontal shifts in time–temperature superposition. In addition, the temperature- and stress-shift factors used to construct master curves were well fitted with the WLF equation. Furthermore, the parameters of the modified WLF equation were also successfully calibrated. The application of this method and equation can be extended to curve shifting that involves the effects of both temperature and stress simultaneously. 相似文献
8.
This paper presents results from an experimental study of the influence of embedded defects created during automated fiber tape placement, on the mechanical properties of carbon/epoxy composites. Two stacking sequences have been examined, [(−45°/+45°)3/−45°] and [90°4/0°3/90°4], in which gaps and overlaps have been introduced during fiber placement. These materials have been cured in an autoclave either with or without a caul plate, then analyzed by ultrasonic C-scan. The microstructures were characterized by scanning electron microscopy. In-plane shear tests were performed on the ±45° laminates and showed that the use of a caul plate does not affect mechanical behavior of plies in the embedded defect region. Compression tests were performed on 0°/90° laminates and in this case the presence of a caul plate is critical during polymerization as it prevents thickness variations and allows defects to heal. 相似文献
9.
10.
11.
The influences of temperature, manganese, and carbon on the surface tension of liquid ternary Fe–Mn–C systems were investigated. The measurements were carried out with the sessile drop method in the temperature range of 1653–1834?K. The manganese and carbon contents were changed between 4.79–9.89 and 1.07–4.20?wt%, respectively. It was demonstrated that the surface tension varied as a linear function of temperature for all the examined samples. With increasing manganese content, the surface tension decreased. When the weight fraction of manganese with respect to iron was fixed, the surface tension decreased with increasing carbon content. From thermodynamic consideration, it was considered that carbon preferentially adsorbed on the metal surface as carbon atoms rather than manganese carbide. 相似文献
12.
13.
The objective of this research was to analyse the differences in the dissipated energy under uniaxial tension and biaxial tension–compression load of fibre reinforced concretes using the Wedge Splitting Test. Under biaxial load the specimens were subjected to compressive stress ratios from 10% to 50% of the concrete compressive strength perpendicular to the direction of the tensile load.Under biaxial tension–compression load the energy dissipation capacity of the specimens decreases compared to the uniaxial tension load case on average 20–30%. It is believed that the decrease is a result of the damage mechanism of the concrete matrix and deterioration of the fibre–matrix and/or aggregate–cement paste interfaces in case the section is additionally loaded with compression stresses. This indicates that dimensioning of concrete elements under biaxial stress states using material parameters obtained from tests conducted on specimens under uniaxial tensile load is unsafe and could potentially lead to a non-conservative design.In the second part of this paper the extent of the fracture process zone under uniaxial tension and biaxial tension–compression load will be examined with the Acoustic Emission technique and the reasons for decrease of the energy dissipation capacity under biaxial load will be further discussed. 相似文献
14.
《Composites Part A》2002,33(3):361-368
It is well known that composite laminates are easily damaged by low velocity impact. This event causes internal delaminations that can drastically reduce the compressive strength of laminates. In this study, numerical and experimental analyses for predicting the damage in carbon–epoxy laminates, subjected to low velocity impact, were performed. Two different laminates (04,904)s and (02,±452,902)s were tested using a drop weight testing machine. Damage characterisation was carried out using X-rays radiography and the deply technique. The developed numerical model is based on a special shell finite element that guarantees interlaminar shear stresses continuity between different oriented layers, which was considered fundamental to predict delaminations. In order to predict the occurrence of matrix failure and the delaminated areas, a new failure criterion based on experimental observations and on other developed criteria, is included. A good agreement between experimental and numerical analysis for shape and orientation of delaminations was obtained. For delaminated areas, reasonable agreement was obtained. 相似文献
15.
《Materials Science & Technology》2013,29(6):809-814
AbstractThe present paper is concerned with the fatigue behaviour ofcarbon-epoxy laminates with embedded optical fibres subjected to bending loads. The main goal of this investigation was to evaluate quantitatively the effect of the presence of optical fibres within the host structure on its whole fatigue behaviour. Two optical fibre positions were investigated: in the mid-plane of the laminate and near the surface subjected to loading. Two distinct geometries of the ply stacking sequence were also considered, namely unidirectional and crossply. In order to evaluate the fatigue life and the fatigue damage, two different loading levels were used, both at 6 Hz frequency, room temperature and R = 0.1. Fatigue damage was monitored using dynamic stiffness decay and acoustic emission techniques. Failure mechanisms were analysed by means of optical and scanning microscopy. The results obtained lead to the conclusion that the embedding of optical fibres markedly prejudices the fatigue performance of the material only for certain configurations. It was also possible to speculate on the fatigue failure mechanisms, and to relate them with relevant experimental parameters, such as the lay-up geometry and optical fibre position. 相似文献
16.
Cui Da Li Daokui Zhou Shiming 《International Journal of Mechanics and Materials in Design》2022,18(3):567-585
International Journal of Mechanics and Materials in Design - In light of the bending–twisting coupled composite structure, the structural geometric parameters are considered as variables in... 相似文献
17.
18.
Effect of strain rate on the tension–compression asymmetric responses of Ti–6.6Al–3.3Mo–1.8Zr–0.29Si
An experimental investigation is performed to explore the tension–compression asymmetry of Ti–6.6Al–3.3Mo–1.8Zr–0.29Si alloy over a wide range of strain rates. A split Hopkinson bar technique is used to obtain the dynamic stress–strain responses under uniaxial tension and compression loading conditions. Experimental results indicate that the alloy is a rate sensitive material. Both tension yield strength and compression yield strength increase with increasing strain rate. The mechanical responses of the alloy have the tension–compression asymmetry. The values of yield strength and subsequent flow stress in compression are much higher than that in tension. The yield strength is more sensitive to change with strain rate in tension than compression. The difference of the yield strength between tension and compression increases with the increase of strain rate. The tensile specimen is broken in a manner of ductile fracture presenting characteristic dimples, while the compressive specimen fails in a manner of localized shearing failure. 相似文献
19.
《Materials Science & Technology》2013,29(5):607-610
AbstractThe success of a gas pressure superplastic forming operation depends on accurate formulation of a pressure–time diagram which in turn needs an accurate stress–strain relationship evaluated preferably under multiaxial or biaxial conditions. The present analysis describes a technique of generating such curves from gas pressure cone forming tests and subsequent manipulation of the data. The method also includes an innovative technique of online monitoring of strain during the forming process by measuring the volume of displaced air from the die during progress of forming. 相似文献
20.
This paper presents an investigation into the effect of stitch density on the delamination toughening and self-healing properties of carbon–epoxy laminates. The stitches provide the laminate with the synergistic combination of high mode I interlaminar fracture toughness to resist delamination cracking and healing properties to repair delamination damage. The results show that the fracture toughness of the laminate increased with stitch density, due to higher traction (crack closure) loads exerted by the stitches bridging the delamination. During the healing process these bridging stitches first melt and then flow into the delamination, leading to self-healing with full restoration of the mode I fracture toughness. Furthermore, the stitches were capable of repairing delamination cracks many times larger than the original size of the stitches. The effect of stitch density on the healing process of delamination cracks and restoration of fracture toughness was found to remain approximately the same under multiple repair operations. 相似文献