共查询到19条相似文献,搜索用时 187 毫秒
1.
2.
用正交试验研究了注射温度、注射压力、注射速度和冷却时间对化学发泡法制备聚丙烯(PP)/云母粉发泡材料的泡孔平均直径和泡孔密度的影响.结果表明,在PP中添加云母粉后.注射压力对发泡PP/云母粉材料的结构参数影响最大,其次为注射温度;较理想的工艺参数为注射温度170℃、注射压力50 MPa,注射速度95%、冷却时间30 s. 相似文献
3.
近年来.地球越来越变暖.为了防止地球温室效应.我们必须减少化石能源的使用量.很多公司也致力于研制开发减少能源消费量的新制品。对于塑料制品性能的要求也不断地提高.如制品 相似文献
4.
塑料注塑成型--结构发泡 总被引:2,自引:0,他引:2
简要介绍了用于塑料的发泡注塑成型技术,并重点描述了结构发泡中的低压发泡法、高压发泡法、双组份发泡法和反压发泡法及影响发泡注塑的因素。 相似文献
5.
6.
MuCell微发泡注塑成型技术应用 总被引:1,自引:0,他引:1
MuCell微发泡注塑成型技术的使用日趋普及,其制品主要集中在品质要求较高、材料较贵的产品上。近年来,选用微发泡注塑成型技术的中国企业数目快速增长,其应用领域也正在扩大。 相似文献
7.
8.
9.
10.
11.
Jung-Hwan Seo Won-Suk Ohm Soo-Hyun Cho 《Polymer-Plastics Technology and Engineering》2013,52(6):588-592
Microcellular plastics (MCPs) are manufactured through a batch process comprised of saturation and foaming stages. In the saturation process, gas molecules are dissolved into plastic in a high-pressure vessel. Following the saturation process, micro-cells are formed inside the plastic as the gas-dissolved plastic sample undergoes the foaming process. In this paper, we investigate the effects of repeating the batch process on the formation of MCPs. Because the plastic sample after the first batch process has developed microcells, these pre-existing cells are expected to affect the second round of the batch process. Of particular interest is the effect of repeated saturation at different saturation pressures. Experiments show that repeating the batch process can lead to favorable outcomes in terms of foaming ratio and cell morphology, which are otherwise unattainable particularly with a single batch process. 相似文献
12.
发泡工艺对超临界CO2/PP微孔发泡泡孔形态的影响 总被引:1,自引:0,他引:1
研究了超临界CO2/PP微孔发泡过程中发泡温度和饱和压力对结晶性聚合物PP泡孔形态的影响。结果表明,温度对泡孔形态影响很大,温度升高,熔体黏度和表面张力降低,泡孔变大,泡孔密度减小。与发泡温度相比,CO2饱和压力对泡孔结构的影响较小。压力太低,CO2的溶解度小,泡孔壁太厚,泡孔分布不均匀。随着压力升高,CO2的溶解度增加,熔体黏度减小,所以泡孔直径和泡孔密度都增加,泡孔壁变薄。 相似文献
13.
14.
Tao Liu Hengwu Liu Lingli Li Xianzhong Wang Ai Lu 《Polymer-Plastics Technology and Engineering》2013,52(5):440-445
A series of microcellular poly (phenylene sulfide) (PPS) foams were prepared by Mucell injection molding. The cell structure, mechanical properties, crystallization behavior and dielectric property of microcellular PPS foams were systemically investigated. The results showed that the longer the length of flow passage of injection mold, the larger cell size of microcellular PPS foams. The injection parameter of shot size played an important role in relative density of microcellular PPS foams. When the relative density of microcellular PPS foam reached to 0.658, the tensile strength, flexural strength and impact strength of PPS foam materials achieved 10.82 MPa, 52.99 MPa and 0.305 J/cm2, respectively. Meanwhile, with the relative density decreasing, the dielectric constant of PPS foam materials reduced, while the volume resistivity of its uprated. 相似文献
15.
气体辅助注射成型过程的数值模拟技术 总被引:4,自引:0,他引:4
本文描述了气体辅助注射成型过程中熔体充填及气体穿入的数学模型,采用有限元/控制体积法计算充填阶段的压力场,确定两类移动边界,熔体前沿和熔体-气体边界。并对典型制件进行模拟验证了模型的可行性。对不同成型参数如熔体充填百分比及气道直径的影响进行了研究,结果表明熔体充填百分比不够,使气体吹入薄壁,较高的充填比又会阻止气体进入气道;较大直径的气道较小直径的气体不易进入薄壁处。 相似文献
16.
17.
18.
This paper reports the study of microcellular injection molding of low-density polyethylene- (LDPE) based composites. The effects of adding nanoclays and polymer additives in LDPE as well as rheological property of materials on the cell morphology, mechanical properties and surface properties of microcellular injection molded LDPE based composites are presented. For the microcellular injection molding process, when 3 wt% of nanoclays are added into LDPE-based polymers, the cell morphology can be significantly improved due to the nucleating effects resulting from the broad interface areas between polymer and nanoclays. Also, the addition of low melt flow LDPE into high melt flow LDPE could achieve smaller and denser bubbles in the polymer matrix than neat high melt flow LDPE. 相似文献
19.
聚丙烯物理法微孔发泡操作条件与泡孔形态的关系研究 总被引:2,自引:0,他引:2
以超临界CO2流体和丁烷为发泡剂,用快速释压的方法,对PP的微孔发泡进行了研究,得到了泡孔密度达10^9泡孔/cm^2,泡孔直径为20-50μm的微孔泡沫塑料颗粒。研究表明,改变饱和压力和温度可以控制发泡的泡孔结构和密度。使用CO2为发泡剂,当温度低于90℃或压力低于6.0MPa时,PP很难出现发泡。提高温度使泡孔出现五边形的结构但泡孔尺寸增大;增加饱和压力,泡孔密度增加,泡孔直径减小。用超临界CO2流体和丁烷作发泡剂时所得到的泡孔密度分别为2.0×10^8-10^9和2.0×10^5—10^7泡孔/cm^3,泡孔平均尺寸分别为20—50μm和100—500μm。用超临界CO2流体和丁烷混合气体作为发泡剂时泡孔直径则出现了双峰分布的结构;加入成核剂炭黑后所得到的泡孔尺寸大于未加成核剂的情况,其泡孔密度和泡孔直径分别为7.0×10^6—1.6×10^9泡孔/cm^3和55—300μm。 相似文献