首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
周枫  李荣雨 《计算机科学》2018,45(6):235-240
针对深度学习在处理文本分类问题时存在的适应度小、精确度较低等问题,提出一种采用双向门控循环单元(BGRU)进行池化的改进卷积神经网络模型。在池化阶段,将BGRU产生的中间句子表示与由卷积层得到的局部表示进行对比,将相似度高的判定为重要信息,并通过增大其权重来保留此信息。该模型可以进行端到端的训练,对多种类型的文本进行训练,适应性较强。实验结果表明,相较于其他同类模型,提出的改进模型在学习能力上有较大优势,分类精度也有显著提高。  相似文献   

2.
针对脑电信号情感识别率偏低的问题,提出了一种基于3DC-BGRU的脑电情感识别方法。对单通道脑电信号进行短时傅里叶变换(STFT),提取相关频带的时频信息构成二维时频图,并将多个通道的时频图构成一种全新的时间、频率和通道的三维数据形式,通过三维卷积的方式设计了一种新颖的卷积神经网络(CNN)模型对三维数据进行深层特征提取,设计双向门控循环单元(BGRU)对深层特征的序列信息进行处理并配合Softmax进行分类。实验结果表明该方法分类识别率得到提高。  相似文献   

3.
对于句子级文本情感分析问题,目前的深度学习方法未能充分运用情感词、否定词、程度副词等情感语言资源。提出一种基于变换器的双向编码器表征技术(Bidirectional encoder representations from transformers,BERT)和双通道注意力的新模型。基于双向门控循环单元(BiGRU)神经网络的通道负责提取语义特征,而基于全连接神经网络的通道负责提取情感特征;同时,在两个通道中均引入注意力机制以更好地提取关键信息,并且均采用预训练模型BERT提供词向量,通过BERT依据上下文语境对词向量的动态调整,将真实情感语义嵌入到模型;最后,通过对双通道的语义特征与情感特征进行融合,获取最终语义表达。实验结果表明,相比其他词向量工具,BERT的特征提取能力更强,而情感信息通道和注意力机制增强了模型捕捉情感语义的能力,明显提升了情感分类性能,且在收敛速度和稳定性上更优。  相似文献   

4.
正确识别语音中包含的情感信息可以大幅提高人机交互的效率.目前,语音情感识别系统主要由语音特征抽取和语音特征分类两步组成.为了提高语音情感识别准确率,选用语谱图而非传统声学特征作为模型输入,采用基于attention机制的CGRU网络提取语谱图中包含的频域信息和时域信息.实验结果表明:在模型中引入注意力机制有利于减少冗余信息的干扰,并且相较于基于LSTM网络的模型,采用GRU网络的模型预测精确度更高,且在训练时收敛更快,与基于LSTM的基线模型相比,基于GRU网络的模型训练时长只有前者的60%.  相似文献   

5.
针对传统语言模型的词向量表示无法解决多义词表征的问题,以及现有情感分析模型不能充分捕获长距离语义信息的问题,提出了一种结合BERT和BiSRU-AT的文本情感分类模型BERT- BiSRU-AT。首先用预训练模型BERT获取融合文本语境的词向量表征;然后利用双向简单循环单元(BiSRU)二次提取语义特征和上下文信息;再利用注意力机制对BiSRU层的输出分配权重以突出重点信息;最后使用Softmax激励函数得出句子级别的情感概率分布。实验采用中文版本的推特数据集和酒店评论数据集。实验结果表明,结合BERT和BiSRU-AT的文本情感分析模型能够获得更高的准确率,双向简单循环模型和注意力机制的引入能有效提高模型的整体性能,有较大的实用价值。  相似文献   

6.
陈可嘉  刘惠 《计算机工程》2022,48(5):59-66+73
传统的自注意力机制可以在保留原始特征的基础上突出文本的关键特征,得到更准确的文本特征向量表示,但忽视了输入序列中各位置的文本向量对输出结果的贡献度不同,导致在权重分配上存在偏离实际的情况,而双向门控循环单元(BiGRU)网络在对全局信息的捕捉上具有优势,但未考虑到文本间存在的局部依赖关系。针对上述问题,提出一种基于改进自注意力机制的BiGRU和多通道卷积神经网络(CNN)文本分类模型SAttBiGRU-MCNN。通过BiGRU对文本序列的全局信息进行捕捉,得到文本的上下文语义信息,利用优化的多通道CNN提取局部特征,弥补BiGRU忽视局部特征的不足,在此基础上对传统的自注意力机制进行改进,引入位置权重参数,根据文本向量训练的位置,对计算得到的自注意力权重概率值进行重新分配,并采用softmax得到样本标签的分类结果。在两个标准数据集上的实验结果表明,该模型准确率分别达到98.95%和88.1%,相比FastText、CNN、RCNN等分类模型,最高提升了8.99、7.31个百分点,同时精确率、召回率和F1值都有较好表现,取得了更好的文本分类效果。  相似文献   

7.
近年来,卷积神经网络(convolutional neural network, CNN)和循环神经网络(recurrent neural network, RNN)已在文本情感分析领域得到广泛应用,并取得了不错的效果.然而,文本之间存在上下文依赖问题,虽然CNN能提取到句子连续词间的局部信息,但是会忽略词语之间上下文语义信息;双向门控循环单元(bidirectional gated recurrent unit, BiGRU)网络不仅能够解决传统RNN模型存在的梯度消失或梯度爆炸问题,而且还能很好地弥补CNN不能有效提取长文本的上下文语义信息的缺陷,但却无法像CNN那样很好地提取句子局部特征.因此提出一种基于注意力机制的多通道CNN和双向门控循环单元(MC-AttCNN-AttBiGRU)的神经网络模型.该模型不仅能够通过注意力机制关注到句子中对情感极性分类重要的词语,而且结合了CNN提取文本局部特征和BiGRU网络提取长文本上下文语义信息的优势,提高了模型的文本特征提取能力.在谭松波酒店评论数据集和IMDB数据集上的实验结果表明:提出的模型相较于其他几种基线模型可以提取到更丰富的文本特征,可以取得比其他基线模型更好的分类效果.  相似文献   

8.
大学生论坛语句具有篇幅短、口语化、多流行用语等特点,传统的情感分析模型难以对其进行精准的语义特征表示,并且未充分关注语句的局部特征与上下文语境。提出一种基于RoBERTa-WWM的大学生情感分析模型。通过RoBERTa-WWM模型将论坛文本语句转化为语义特征表示,并将其输入到文本卷积神经网络中,以提取语句的局部语义特征,同时利用双向门控循环单元网络对局部语义特征进行双向处理,获得全面的上下文语义信息。在此基础上,通过Softmax分类器计算语句在情感标签中的概率向量,选择最大值表示的情感标签作为最终输出的情感标签。实验结果表明,相比RoBERTa-WWM、EK-INIT-CNN、BERT等模型,该模型在大学生论坛与NLPCC2014数据集上具有较优的分类性能,并且在大学生论坛数据集上宏平均精准率、宏平均召回率、宏平均F1值和微平均F1值分别为89.43%、90.43%、90.12%和92.48%。  相似文献   

9.
10.
针对现有多模态情感分析方法中存在情感分类准确率不高,难以有效融合多模态特征等问题,通过研究分析相邻话语之间的依赖关系和文本、语音和视频模态之间的交互作用,建立一种融合上下文和双模态交互注意力的多模态情感分析模型.该模型首先采用双向门控循环单元(BiGRU)捕获各模态中话语之间的相互依赖关系,得到各模态的上下文信息.为了...  相似文献   

11.
12.
文本情感极性分析是自然语言处理的热点领域,近年来基于中文语料的情感分析方法受到了学术界的广泛关注.目前大部分基于词向量的循环神经网络与卷积神经网络模型对于文本特征的提取和保留能力不足,为此文中引入了多层自注意力机制,提出了一种结合双向门控循环单元(BGRU)和多粒度卷积神经网络的中文情感极性分析方法.该方法首先使用BG...  相似文献   

13.
中文文本情感词典构建方法   总被引:1,自引:0,他引:1  
互联网海量文本的情感分析是当前的一个研究热点。介绍了一种中文文本情感词典构建方法,该方法选用若干个情感种子词,利用搜索引擎返回的共现数,通过改进的PMI(pointwise mutual information)算法计算情感词的情感权值。将构建的情感词典应用到文本情感分类实验中,在不同的语料环境下,对比基于情感词典和朴素贝叶斯分类器下的文本情感分类效果,实验结果表明,构建的情感词典,可有效用于情感特征选择和直接用于情感分类,并且分类性能稳定。  相似文献   

14.
近年来,深度学习被广泛应用于文本情感分析。其中文本卷积神经网络(TextCNN)最具代表性,但是TxetCNN的语义特征提取存在词嵌入维度语义特征丢失、最大池化算法特征提取不足和文本长期依赖关系丢失的问题。针对以上问题,提出多特征混合模型(BiLSTM-MFCNN)的文本情感分析方法。该方法使用双向长短记忆网络(BiLSTM)学习文本的长期依赖关系;改进TextCNN的卷积层和池化层提出多特征卷积神经网络(MFCNN),卷积层利用五种不同的卷积算法,分别从句子维度、整个词嵌入维度、单个词嵌入维度、相邻词向量维度和单个词向量维度提取文本的语义特征,池化层利用最大池化算法和平均池化算法,获取文本的情感特征。在中文NLPCC Emotion Classification Challenge和COAE2014数据集、英文Twitter数据集进行对比实验,实验结果表明该混合模型在文本情感分析任务中能够取得更好的效果。  相似文献   

15.
针对传统的卷积神经网络未能充分利用不同通道间的文本特征语义信息和关联信息,以及传统的词向量表示方法采用静态方式对文本信息进行提取,忽略了文本的位置信息,从而导致文本情感分类不准确的问题,提出了一种结合ALBERT(a lite BERT)和注意力特征分割融合网络(attention feature split fusion network,AFSFN)的中文短文本情感分类模型ALBERT-AFSFN。该模型利用ALBERT对文本进行词向量表示,提升词向量的表征能力;通过注意力特征分割融合网络将特征分割为两组,对两组不同通道的特征进行提取和融合,最大程度保留不同通道之间的语义关联信息;借助Softmax函数对中文短文本情感进行分类,得到文本的情感倾向。在三个公开数据集Chnsenticorp、waimai-10k和weibo-100k上的准确率分别达到了93.33%、88.98%和97.81%,F1值也分别达到了93.23%、88.47%和97.78%,结果表明提出的方法在中文短文本情感分析中能够达到更好的分类效果。  相似文献   

16.
基于无监督的文本情感迁移技术是通过迁移原句子情感并且保持句子内容不变,生成带有其他情感的新句子的技术。这项技术在两个方面富有挑战性: 第一,没有平行语料;第二,文本属性纠缠问题,即当改变句子情感时,通常难以保证句子内容不变。该文提出了一个基于掩码自编码器(mask-autoEncoder,MaskAE)的文本情感迁移方法。首先,利用情感词典来匹配句子中的情感词并用“mask”符号标记它;之后,利用MaskAE 模型生成被标记的情感词,保持其他词不变,从而缓解属性纠缠问题。在模型训练过程中,利用情感判别器去控制生成句子的情感,从而解决没有平行语料问题。实验结果表明,该文模型简单有效,与当前先进模型比较,在自动评价指标和人工评价指标上均有提升,生成的句子在语法和语义正确性上的表现也更好。  相似文献   

17.
史伟  付月 《计算机科学》2021,48(z1):158-164
传统基于词典的情感分析方法中情感词语的极性和强度是固定和静态的,没有考虑情感词语随不同语义环境极性和强度的变化.为此,提出一种考虑语境的基于情感本体和情感圈的微博短文本情感分析方法.采用情感圈方法考虑不同语境中词语的共现模式,以捕获它们的语义并更新情感词语的极性和强度.结合已构建的情感本体和语义量化规则,建立考虑语义环...  相似文献   

18.
针对循环神经网络或者长短时记忆网络,远距离的相互依赖特征,要经过若干时间步骤的信息累积才能将两者联系起来,而距离越远,有效捕获的可能性越小的问题,笔者提出一种多维度,双向自注意网络(MDiSAN)的情感分析研究方法。引入双向多维度自注意会在计算过程中直接将句子中任意两个单词的联系通过一个计算步骤直接联系起来,使得远距离依赖特征之间的距离被极大缩短,能有效地利用特征。在计算每个特征时,能获取更准确的语义特征。在使用斯坦福情绪树库(SST)进行实验,将之前的模型与MDiSAN进行比较测试准确性。MDiSAN提高了最高精度(由CNN-Tensor给出)0.52%。与大量现有结构使用树的模型相比,MV-RNN,RNTN和Tree-LSTM,MDiSAN的表现分别优于7.32%,6.02%和0.72%。此外,MDiSAN比基于CNN的模型有更好的性能。  相似文献   

19.
短文本情感分析用于判断文本的情感极性,在商品评论、舆情监控等领域有重要应用。由于目前主流的基于词注意力机制的双向循环神经网络模型性能很大程度上依赖于分词的准确性,且注意力机制需较多的参数依赖,无法使模型更多的关注短文本的内部序列关系。针对上述问题,该文提出了基于字向量表示方法并结合Self-attention和BiLSTM的中文短文本情感分析算法。首先,对短文本进行字向量化表示,采用BiLSTM网络提取文本上下文关系特征,通过自注意力机制动态调整特征权重,Softmax分类器得到情感类别。在COAE 2014微博数据集和酒店评论数据集的实验结果表明,采用字向量文本表示方法较词向量更适合短文本,自注意力机制可以减少外部参数依赖,使模型能学到更多的文本自身关键特征,分类性能可分别提高1.15%和1.41%。  相似文献   

20.
目前基于词嵌入的卷积神经网络文本分类方法已经在情感分析研究中取得了很好的效果。此类方法主要使用基于上下文的词嵌入特征,但在词嵌入过程中通常并未考虑词语本身的情感极性,同时此类方法往往缺乏对大量人工构建情感词典等资源的有效利用。针对这些问题,该文提出了一种结合情感词典和卷积神经网络的情感分类方法,利用情感词典中的词条对文本中的词语进行抽象表示,在此基础上利用卷积神经网络提取抽象词语的序列特征,并用于情感极性分类。该文提出的相关方法在中文倾向性分析评测COAE2014数据集上取得了比目前主流的卷积神经网络以及朴素贝叶斯支持向量机更好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号