共查询到19条相似文献,搜索用时 46 毫秒
1.
针对头部姿态估计受光照变化、表情、噪声干扰等因素影响导致识别率低的问题,提出一种融合二阶梯度方向直方图(HOG)和中心对称局部二值模式(CS-LBP)特征的姿态特征,用于单帧图像的头部姿态估计。采用二阶HOG对人脸图像进行形状信息提取,得到人脸的轮廓特征;用CS-LBP进行局部纹理信息的提取,通过将二阶HOG提取的轮廓特征和CS-LBP提取的纹理特征进行融合,得到更有效的人脸特征;将融合的姿态特征通过核主成分分析(KPCA)变换非线性映射到高维核空间中,抽取其主元特征分量,采用支持向量机(SVM)分类器进行姿态估计。实验结果表明,方法和HOG、LBP、二阶HOG、CS-LBP方法相比有更高的分类准确率,对光照的变化有很好的鲁棒性。 相似文献
2.
基于改进LPP的头部姿态估计方法 总被引:1,自引:0,他引:1
针对无监督局部保持投影算法在头部姿态估计上的高误差性和对噪音的敏感性的问题,提出一种鲁棒的局部保持投影算法。其基本出发点是先对训练的头部姿态加以姿态标注,并获得各个头部姿态间的偏置距离,再对所有头部姿态样本点进行异常值的度量,训练出较好的线性映射矩阵。实验结果表明,改进的方法比传统的LPP在头部姿态估计上取得较好的效果。 相似文献
3.
陶丽君 《计算机光盘软件与应用》2013,(6)
本文设计了一个基于随机森林方法的实时头部姿态估计系统。将头部姿态估计问题转化成一个分类问题,标记正负样本集,采用样本加分类标签的形式进行训练,结合随机森林回归方法估计头部姿态。 相似文献
4.
摘 要:实时的头部姿态估计在人机交互和人脸分析应用中起着至关重要的作用,但准确 的头部姿态估计方法依然具有一定的挑战性。为了提高头部姿态估计的准确性和鲁棒性,将基 于几何的方法与基于学习的方法相结合进行头部姿态估计。在人脸检测和人脸对齐的基础上, 提取彩色图像几何特征和深度图像的局部区域深度特征,再结合深度块的法线和曲率特征,构 成特征向量组;然后使用随机森林的方法进行训练;最后,所有决策树进行投票,对得到的头 部姿态高斯分布估计进行阈值过滤,进一步提高模型预测的准确度。实验结果表明,该方法与 现有的头部姿态估计方法相比,具有更高的准确度及鲁棒性。 相似文献
5.
6.
7.
刘勇 《电子制作.电脑维护与应用》2013,(7):92-94
我们提出一种监督Laplacian LLE算法,并结合正则化的最小二乘方法来有效地解决头部姿态估计问题,比传统的流形学习算法能更有效的保持数据的局部几何结构,并且能获得显式的直接映射来处理样本外扩展问题。在FacePix数据集的头部姿态估计实验结果表明,我们的算法是有效的,对于训练数据和测试数据,我们提出的算法的性能明显高于其他对比算法的性能。 相似文献
8.
9.
局部嵌入分析(LEA)是图嵌入化的局部线性嵌入(LLE)方法。在头姿态估计问题上,选择局部邻域时只考虑属于同一类的姿态,但失去了相邻姿态的几何拓扑信息。为此,提出一种改进的邻域选择方法,充分利用先验姿态信息,使降维后的流形更加平滑,同类姿态互相靠近,不同类姿态之间的距离随着姿态差值变大而增大,且能够使训练及测试样本的低维流形更加靠近,降低了估计误差。在Facepix人脸数据库上的实验证明了该方法的有效性。 相似文献
10.
11.
一种基于图像表观的鲁棒姿态估计方法 总被引:1,自引:0,他引:1
提出一种利用图像的表观特征进行头部姿态估计的方法.该方法首先使用了一维Gabor 滤波器对头部图像进行特征提取,然后对提取得到的一维Gabor 特征进一步使用了基于核函数的局部费舍尔判别分析方法增强特征的判别能力.与传统二维Gabor 特征相比,一维Gabor 特征除了在计算速度和存储空间上具有明显的优势以外,更与姿态紧密相关.而基于核函数的局部费舍尔判别分析方法,能够解决姿态问题中存在的非线性问题和多模态问题.大量的实验结果表明,该算法对于姿态估计问题是有效的.特别需要指出的是,该算法具有良好的推广能力 相似文献
12.
网页作弊不仅造成信息检索质量下降,而且给互联网的安全也带来了极大的挑战.提出了一种基于Bag-ging-SVM集成分类器的网页作弊检测方法.在预处理阶段,首先采用K-means方法解决数据集的不平衡问题,然后采用CFS特征选择方法筛选出最优特征子集,最后对特征子集进行信息熵离散化处理.在分类器训练阶段,通过Bagging方法构建多个训练集并分别对每个训练集进行SVM学习来产生弱分类器.在检测阶段,通过多个弱分类器投票决定测试样本所属类别.在数据集WEBSPAM-UK2006上的实验结果表明,在使用特征数量较少的情况下,本检测方法可以获得非常好的检测效果. 相似文献
13.
14.
15.
16.
结合CPCA(连续主成分分析)与MND(最大法向量分布)两种姿态估计方法,提出一种综合的姿态估计算法CMIA(CPCA and MND Integrated Algorism).研究发现CPCA与MND所适合的模型具有互补性,故将两者结合起来,根据模型的具体特征,选择合适的姿态估计算法.通过深度缓存算法对规范后的模型进行特征提取,并用PSB(Princeton Shape Benchmark)进行测试.实验结果验证了该算法的有效性.该算法的精确度较MND提高了24%,较CPCA提高了5%.可见通过选择合适的姿态估计算法,明显提高了模型的规范化效果. 相似文献
17.
针对现有迭代最近点(ICP)头姿估计算法存在迭代次数偏多且易陷于局部最优、而随机森林(RF)头姿估计算法准确性和稳定性不高的问题,提出一种新的头姿估计改进方法,并基于该改进方法构建机器人轮椅实时交互控制接口.首先,分析现有迭代最近点头姿算法与随机森林头姿算法在准确性、实时性及稳定性方面存在的问题,并提出一种新的基于随机森林与迭代最近点算法融合的头姿估计改进方法;其次,为实现头姿估计到机器人轮椅交互控制的无缝连接,建立基于传统机器人轮椅操纵杆的头部姿态运动空间映射;最后,在基于标准头姿数据库分析改进头姿估计方法性能的基础上,构建机器人轮椅实验平台并规划运动轨迹,以进一步验证基于改进头姿估计方法的人机交互接口在机器人轮椅实时控制方面的有效性.实验结果表明,改进后的头姿估计方法较传统迭代最近点算法减少了迭代次数且避免了陷于局部最优,在仅增加少量运算时间的基础上,其准确性和稳定性都优于传统随机森林算法;同时,基于改进头姿估计方法的人机交互接口亦能实时平稳地控制机器人轮椅沿既定的轨迹运动. 相似文献
18.
19.
针对传统头部姿态估计网络存在空间结构信息易丢失问题,论文提出一种将胶囊网络与传统卷积神经网络相结合的头部姿态估计网络模型.该模型采用具有多级输出结构的传统卷积神经网络,将不同层级的空间结构信息和语义信息进行提取,同时利用胶囊网络能够充分保留特征信息的优点,将提取的特征进行编码,从而使其以胶囊的形式进行传递和输出,有效避... 相似文献