首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
刘娟  万静 《计算机科学与探索》2021,15(10):1888-1899
密度峰值聚类算法是一种基于密度的聚类算法.针对密度峰值聚类算法存在的参数敏感和对复杂流形数据得到的聚类结果较差的缺陷,提出一种新的密度峰值聚类算法,该算法基于自然反向最近邻结构.首先,该算法引入反向最近邻计算数据对象的局部密度;其次,通过代表点和密度相结合的方式选取初始聚类中心;然后,应用密度自适应距离计算初始聚类中心之间的距离,利用基于反向最近邻计算出的局部密度和密度自适应距离在初始聚类中心上构建决策图,并通过决策图选择最终的聚类中心;最后,将剩余的数据对象分配到距离其最近的初始聚类中心所在的簇中.实验结果表明,该算法在合成数据集和UCI真实数据集上与实验对比算法相比较,具有较好的聚类效果和准确性,并且在处理复杂流形数据上的优越性较强.  相似文献   

2.
一种基于局部密度的分布式聚类挖掘算法   总被引:4,自引:1,他引:3  
倪巍伟  陈耿  吴英杰  孙志挥 《软件学报》2008,19(9):2339-2348
分布式聚类挖掘技术是解决数据集分布环境下聚类挖掘问题的有效方法.针对数据水平分布情况,在已有分布式密度聚类算法DBDC(density based distributed clustering)的基础上,引入局部密度聚类和密度吸引子等概念,提出一种基于局部密度的分布式聚类算法——LDBDC(local density based distributed clustering).算法适用于含噪声数据和数据分布异常情况,对高雏数据有着良好的适应性.理论分析和实验结果表明,LDBDC算法在聚类质量和算法效率方面优于已有的DBDC算法和SDBDC(scalable dellsity-based distributed clustering)算法.算法是有效、可行的.  相似文献   

3.
古凌岚  彭利民 《计算机科学》2016,43(12):213-217
针对传统的基于欧氏距离的相似性度量不能完全反映复杂结构的数据分布特性的问题,提出了一种基于相对密度和流形上k近邻的聚类算法。基于能描述全局一致性信息的流形距离,及可体现局部相似性和紧密度的k近邻概念,通过流形上k近邻相似度度量数据对象间的相似性,采用k近邻的相对紧密度发现不同密度下的类簇,设计近邻点对约束规则搜寻k近邻点对构成的近邻链,归类数据对象及识别离群点。与标准k-means算法、流形距离改进的k-means算法进行了性能比较,在人工数据集和UCI数据集上的仿真实验结果均表明,该算法能有效地处理复杂结构的数据聚类问题,且聚类效果更好。  相似文献   

4.
针对密度峰值聚类算法(Density Peaks Clustering,DPC)需要人为指定截断距离d c,以及局部密度定义简单和一步分配策略导致算法在复杂数据集上表现不佳的问题,提出了一种基于自然最近邻的密度峰值聚类算法(Density Peaks Clustering based on Natural Nearest Neighbor,NNN-DPC)。该算法无需指定任何参数,是一种非参数的聚类方法。该算法首先根据自然最近邻的定义,给出新的局部密度计算方法来描述数据的分布,揭示内在的联系;然后设计了两步分配策略来进行样本点的划分。最后定义了簇间相似度并提出了新的簇合并规则进行簇的合并,从而得到最终聚类结果。实验结果表明,在无需参数的情况下,NNN-DPC算法在各类数据集上都有优秀的泛化能力,对于流形数据或簇间密度差异大的数据能更加准确地识别聚类数目和分配样本点。与DPC、FKNN-DPC(Fuzzy Weighted K-nearest Density Peak Clustering)以及其他3种经典聚类算法的性能指标相比,NNN-DPC算法更具优势。  相似文献   

5.
针对大数据下密度聚类算法中存在的数据划分不合理、参数寻优能力不佳、并行性能较低等问题,提出一种基于IFOA的并行密度聚类算法(density-based clustering algorithm by using improve fruit fly optimization based on MapReduce,MR-DBIFOA)。首先,该算法基于KD树,提出网格划分策略(divide gird based on KD tree,KDG)来自动划分数据网格;其次在局部聚类中,提出基于自适应搜索策略(step strategy based on knowledge learn,KLSS)和聚类判定函数(clustering criterion function,CCF)的果蝇群优化算法(improve fruit fly optimization algorithm,IFOA);然后根据IFOA进行局部聚类中最优参数的动态寻优,从而使局部聚类的聚类效果得到提升;同时结合MapReduce模型提出局部聚类算法DBIFOA(density-based clustering algorithm using IFOA);最后提出了基于QR-tree的并行合并局部簇算法(cluster merging algorithm by using MapReduce,MR-QRMEC),实现局部簇的并行合并,使算法整体的并行性能得到加强。实验表明,MR-DBIFOA在大数据下的并行效率更高,且聚类效果更好。  相似文献   

6.
CFSFDP(Clustering by Fast Search and Find of Density Peaks)是一种新的基于密度的聚类算法。该算法可以对非球形分布的数据聚类,有待调节参数少、聚类速度快等优点。但是对于类簇间密度相差较大的数据,该算法容易遗漏密度较小的类簇而影响聚类的准确率。针对这一问题,提出了基于密度比例峰值聚类算法即R-CFSFDP。该算法将密度比例引入到CFSFDP中,通过计算样本数据的密度比峰值来提高数据中密度较小类簇的辨识度,进而提升整体聚类的准确率。基于9个常用测试数据集(2个人工合成数据集,7个UCI数据集)的聚类实验结果表明,对于类簇间密度相差较大和类簇形状复杂的数据聚类问题,R-CFSFDP能够使得类簇中心更加清晰、易确定,聚类结果更好。  相似文献   

7.
流形数据由一些弧线状或环状的类簇组成,其特点是同一类簇的样本间距离差距较大。密度峰值聚类算法不能有效识别流形类簇的类簇中心且分配剩余样本时易引发样本的连续误分配问题。为此,本文提出面向流形数据的共享近邻密度峰值聚类(density peaks clustering based on shared nearest neighbor for manifold datasets,DPC-SNN)算法。提出了一种基于共享近邻的样本相似度定义方式,使得同一流形类簇样本间的相似度尽可能高;基于上述相似度定义局部密度,不忽略距类簇中心较远样本的密度贡献,能更好地区分出流形类簇的类簇中心与其他样本;根据样本的相似度分配剩余样本,避免了样本的连续误分配。DPC-SNN算法与DPC、FKNNDPC、FNDPC、DPCSA及IDPC-FA算法的对比实验结果表明,DPC-SNN算法能够有效发现流形数据的类簇中心并准确完成聚类,对真实以及人脸数据集也有不错的聚类效果。  相似文献   

8.
《计算机科学与探索》2016,(11):1614-1622
密度峰聚类是一种新的基于密度的聚类算法,该算法不需要预先指定聚类数目,能够发现非球形簇。针对密度峰聚类算法需要人工确定聚类中心的缺陷,提出了一种自动确定聚类中心的密度峰聚类算法。首先,计算每个数据点的局部密度和该点到具有更高密度数据点的最短距离;其次,根据排序图自动确定聚类中心;最后,将剩下的每个数据点分配到比其密度更高且距其最近的数据点所属的类别,并根据边界密度识别噪声点,得到聚类结果。将新算法与原密度峰算法进行对比,在人工数据集和UCI数据集上的实验表明,新算法不仅能够自动确定聚类中心,而且具有更高的准确率。  相似文献   

9.
机器学习的无监督聚类算法已被广泛应用于各种目标识别任务。基于密度峰值的快速搜索聚类算法(DPC)能快速有效地确定聚类中心点和类个数,但在处理复杂分布形状的数据和高维图像数据时仍存在聚类中心点不容易确定、类数偏少等问题。为了提高其处理复杂高维数据的鲁棒性,文中提出了一种基于学习特征表示的密度峰值快速搜索聚类算法(AE-MDPC)。该算法采用无监督的自动编码器(AutoEncoder)学出数据的最优特征表示,结合能刻画数据全局一致性的流形相似性,提高了同类数据间的紧致性和不同类数据间的分离性,促使潜在类中心点的密度值成为局部最大。在4个人工数据集和4个真实图像数据集上将AE-MDPC与经典的K-means,DBSCAN,DPC算法以及结合了PCA的DPC算法进行比较。实验结果表明,在外部评价指标聚类精度、内部评价指标调整互信息和调整兰德指数上,AE-MDPC的聚类性能优于对比算法,而且提供了更好的可视化性能。总之,基于特征表示学习且结合流形距离的AE-MDPC算法能有效地处理复杂流形数据和高维图像数据。  相似文献   

10.
基于快速搜索和寻找密度峰值聚类算法(DPC)具有无需迭代且需要较少参数的优点,但其仍然存在一些缺点:需要人为选取截断距离参数;在流形数据集上的处理效果不佳。针对这些问题,提出一种密度峰值聚类改进算法。该算法结合了自然和共享最近邻算法,重新定义了截断距离和局部密度的计算方法,并且算法融合了候选聚类中心计算概念,通过算法选出不同的候选聚类中心,然后以这些候选中心为新的数据集,再次开始密度峰值聚类,最后将剩余的点分配到所对应的候选中心点所在类簇中。改进的算法在合成数据集和UCI数据集上进行验证,并与K-means、DBSCAN和DPC算法进行比较。实验结果表明,提出的算法在性能方面有明显提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号