共查询到17条相似文献,搜索用时 93 毫秒
1.
为了有效解决障碍空间中的不确定数据聚类的问题,引入计算几何中的Voronoi图对数据空间进行划分,提出障碍空间中基于Voronoi图的不确定数据聚类算法.根据Voronoi图的性质,提出4项聚类规则.利用KL距离进行相似性度量.根据障碍集合是否发生变化,提出了静态障碍环境下和动态障碍环境下的不确定数据聚类算法.理论研究和实验表明:静态障碍物环境中的不确定精炼聚类算法(简称STAO_RVUBSCAN算法)、障碍物动态增加情况下的不确定聚类算法(简称DYNOC_VUBSCAN算法)、障碍物动态减少情况下的不确定聚类算法(简称DYNOR_VUBSCAN算法)和障碍物动态移动情况下的不确定数据聚类算法(简称DYNOM_VUBSCAN算法)都具有较高的效率. 相似文献
2.
障碍空间中不确定数据聚类算法 总被引:2,自引:0,他引:2
近些年,由于数据采集的不精确和数据本身的不确定性,使不确定性在位置数据中普通存在。在障碍空间中,聚类不确定数据面临新的挑战。提出了障碍空间中聚类不确定数据的OBS-UK-means(obstacle uncertain K-means)算法,并提出了分别基于R树和Voronoi图的两种剪枝策略和最近距离区域的概念,大大减少了计算量。通过实验验证了OBS-UK-means算法的高效性和准确性,同时证明了剪枝策略在不损害聚类有效性的情况下,能够有效地提高聚类效率。 相似文献
3.
张亚昕 《计算技术与自动化》2013,(2):60-63
UK均值算法需要计算每个对象之间的期望距离(EDS)和聚类中心, EDS计算的成本就成了UK均值计算的性能瓶颈。为了提高UK均值的计算效率,本文提出一种优化的UK均值算法,通过一个高效的公式来估计期望距离,大大降低了UK均值的额外时间,并在实验中得以证明。我们还说明这个优化公式有效地将UK均值算法降低到了传统的基于K均值的聚类算法。 相似文献
4.
为改进EMicro算法存在的不足提出了GDF-CUStreams算法。该算法采用网格特征向量存储数据的分布特征,通过更新网格特征向量合并成簇对不确定数据流聚类,对新数据点的到来采用增量聚类。通过网格密度和网格质心之间的距离判定网格是否是零星网格,利用网格引力对簇边界进行优化,检测和删除零星网格,使簇边缘更加平滑,提高聚类精度。其中网格密度和网格质心都采用增量更新。实验结果表明,与EMicro算法相比,GDF-CUStreams效率更高且效果良好。 相似文献
5.
数据采集过程中普遍存在不确定性,并且在现实地理空间中,不确定数据之间可能存在障碍物间隔。为解决障碍空间中不确定数据的聚类问题,提出APPGCUO算法,该算法包括三个过程:在障碍物约束下采用R树节点最小最大值方法提出的RPT-OUCure算法,用以生成局部最优解,提高生成局部最优解的效率;继而利用近似骨架的理论提出GIABO算法,以局部最优解生成有效初始解,避免划分聚类算法中任意初始解的不足;最后结合Voronoi图的特性提出VPT-KMediods算法,减少不确定数据的积分运算量。实验结果表明,APPGCUO算法具有较高的聚类效率和质量。 相似文献
6.
传统的基于相对密度的聚类算法有效地解决了密度聚类算法对参数敏感以及不能区分不同密度等级簇的问题。基于相对密度的不确定聚类算法,借用了相对密度算法的思想,根据不确定数据的特征,定义了不确定数据的距离公式、相对密度、核心点、密度可达等相关概念,从而提出了一种能够有效地处理不确定数据的新算法。数据仿真结果表明了该算法的有效性和可用性。 相似文献
7.
如何降低不确定数据对高维数据聚类的影响是当前的研究难点。针对由不确定数据与维度灾难导致的聚类精度低的问题,采用先将不确定数据确定化,后对确定数据聚类的方法。在将不确定数据确定化的过程中,将不确定数据分为值不确定数据与维度不确定数据,并分别处理以提高算法效率。采用结合期望距离的K近邻(KNN)查询得到对聚类结果影响最小的不确定数据近似值以提高聚类精度。在得到确定数据之后,采用子空间聚类的方式避免维度灾难的影响。实验结果证明,基于Clique的高维不确定数据聚类算法(UClique)在UCI数据集上有较好的表现,有良好的抗噪声能力和伸缩性,在高维数据上能得到较好的聚类结果,在不同的不确定数据集实验中能够得到较高精度的实验结果,体现出算法具有一定的健壮性,能够有效地对高维不确定数据集聚类。 相似文献
8.
维度灾难、含有噪声数据和输入参数对领域知识的强依赖性,是不确定数据聚类领域中具有挑战性的问题。针对这些问题,基于相似性度量和凝聚层次聚类思想的基础上提出了高维不确定数据高效聚类HDUDEC(High Dimensional Un-certain Data Efficient Clustering)算法。该算法采用一个能够准确表达不确定高维对象之间的相似度的度量函数计算出对象之间的相似度,然后根据相似度阈值自底向上进行聚类分析。实验证明新的算法需要的先验知识较少、可以有效地过滤噪声数据、可以高效的获得任意形状的高维不确定聚类结果。 相似文献
9.
维度灾难、含有噪声数据和输入参数对领域知识的强依赖性,是不确定数据聚类领域中具有挑战性的问题。针对这些问题,基于相似性度量和凝聚层次聚类思想的基础上提出了高维不确定数据高效聚类HDUDEC(High Dimensional Uncertain Data Efficient Clustering)算法。该算法采用一个能够准确表达不确定高维对象之间的相似度的度量函数计算出对象之间的相似度,然后根据相似度阈值自底向上进行聚类分析。实验证明新的算法需要的先验知识较少、可以有效地过滤噪声数据、可以高效的获得任意形状的高维不确定聚类结果。 相似文献
10.
UK-means算法在处理不确定数据时对孤立点非常敏感,而且事先必须已知不确定数据的分布函数或概率密度,然而这在实际中往往很难获得。因此,针对UK-means在处理不确定测量数据时的不足,首先提出了基于区间数的PAM不确定聚类算法——U-PAM,该算法用区间数和标准差合理地描述了不确定测量数据的不确定性,进而完成有效的聚类;其次,针对海量不确定测量数据难以聚类的问题,基于U-PAM聚类算法,采用抽样技术提出了处理海量不确定测量数据的算法——UM-PAM算法,该算法先抽样,对样本数据聚类,然后再总体聚类;最后,基于U-PAM算法和CH聚类的有效性指标函数对聚类结果进行分析,以确定最佳聚类数。实验理论表明,所提算法聚类效果明显。 相似文献
11.
12.
数据流的网格密度聚类算法 总被引:3,自引:0,他引:3
提出一种基于密度的实时数据流聚类算法RTCS.算法采用在线/离线双层框架,它在前台在线层快速实时地将到达的数据点放入相应的单元格,对多维数据和空间单元格动态计算密度.在后台离线层形成初始聚类,并不断地更新单元格的密度来自适应地调整聚类.RTCS算法能够根据密度的动态变化区分出真正的孤立点并剔除之,而这种剔除对后面的聚类结果没有影响.实验结果证明,算法可以很好地挖掘出各种形状的聚类,与CluStream算法相比,取得聚类的质量更高,有更快的处理速度,对数据维数和规模有更好的可扩展性. 相似文献
13.
14.
15.
16.
不确定性数据聚类方法的研究日益受到广泛关注,其中UIDK-means算法与U-PAM算法继承了基于划分算法无法识别任意形状簇和对噪声点敏感的缺陷。FDBSCAN算法事先假定不确定性数据的概率分布函数或概率密度函数是已知的,然而这些信息在实际应用中往往难以获取。针对上述算法的不足,提出一种基于区间数的多维不确定性数据聚类UID-DBSCAN算法。该算法利用区间数结合数据的统计信息合理地表示不确定性数据,采用低计算复杂度的区间数距离函数衡量不确定性数据对象间的相似度,首次提出区间数的密度、密度可达与密度相连等概念,并将其用于扩展簇中,同时结合数据集的统计特征自适应地选取算法的密度参数来实现自动聚类。实验结果表明,UID-DBSCAN算法能够有效识别噪声,处理任意形状簇,具有较高的聚类精度和较低的计算复杂度。 相似文献
17.
为解决高维和高不确定级别的数据流聚类问题,提出了一种针对不确定数据流的聚类算法HFMicro。引入粗糙模糊集理论,定义了一种新的不确定数据流模型,并利用隶属程度的上、下近似来描述微簇。根据粗糙模糊集间的相似程度来选择最合适的微簇。使用动态衰减窗口模型提高算法的效率和聚类效果。由于采用了离线聚类模式,使得算法具有较好的实时性。实验结果表明,该算法能够很好地处理高维和高不确定级别的数据流,同时兼容存在级不确定性和属性级不确定性,与现有算法相比效果更好。 相似文献