共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
刘岩顾益军张大瀚 《网络安全技术与应用》2016,(9):49-52
随着互联网和在线社交平台的飞速发展,社会网络开始发展壮大起来,针对社会网络的研究也变得越来越热门。特别是在大数据时代,社会网络研究的价值和意义也将越来越大。个人网络是一种特殊的社会网络,针对个人网络的社交圈发现算法研究意义重大。各种社交平台基本都允许用户将其朋友手动划分到不同的社交圈中,但是对个人网络社交圈进行自动划分的方法研究十分稀少,不断变庞大、变复杂的个人网络致使对其社交圈发现算法研究的难度也在不断提高。Julian等人于2012年首先提出了基于概率模型的个人网络社交圈发现算法(DSCEN算法),实验证明该算法可以有效发现个人网络中的社交圈,并允许社交圈存在重叠、嵌套。本文在研究DSCEN算法的基础上,加入节点相似度因素对算法进行改进,并同时考虑属性相似度和拓扑相似度保证节点相似度的准确性。通过实验验证,改进后的算法具有更好的效果。 相似文献
3.
复杂网络中的社区结构能帮助人们认识网络的基本结构及其功能。针对目前多数社区划分算法准确率低、复杂度高的问题,提出了一种基于共邻节点相似度的社区划分算法。首先,为了计算节点间相似度值,提出了相似度模型,该模型通过将被测节点对的邻居节点引入一并计算,提高了相似度度量的准确性;然后,计算节点局部影响力值,能客观地表现出节点在所处网络中的重要性;其次,结合节点相似度值和节点局部影响力值对节点进行层次聚类,完成网络社区结构的初步划分;最后,通过聚合初步划分的子社区,获得复杂网络的最优模块度值。仿真结果表明,在网络的社区特征模糊时,与新的基于局部相似度的社区发现算法(CDALS)相比,所提算法的准确率提高了14%,证明了所提提法更能够准确、有效地划分复杂网络的社区结构。 相似文献
4.
作为一种新兴的社交媒体,微博由于其信息的简短性、实时性和公开性,在短短4年内已积累数以亿计的用户并且数量还在迅速增长,由此带来的社会影响日益广泛.对微博用户关系网络进行社区发现具有重要的理论和实际意义.根据微博网络的有向性及建立关注关系的随意性等特点,提出一种基于共同关注和共同粉丝的微博用户相似度,定义此相似度的模块化函数,依据贪心算法思想设计出基于此模块化函数最大化的社区发现方法,并在此基础上将该方法推广到具有标签信息的微博网络中.应用该方法处理了3个真实的微博用户关系网络数据,结果表明该方法可以有效地发掘微博用户关系网络中的社区结构. 相似文献
5.
针对GN算法在发现重叠社区时存在的不足,以及为了降低算法时间复杂度,提出一种基于网络图中连边相似度划分连边集的重叠社区发现算法EGN。算法依据网络图的连边集进行划分,每一条边被划分到某个特定的社区,而一个节点可以关联多条连边,因此节点可以被划分到不同的社区,从而发现重叠社区。EGN算法首先需要构造网络节点之间连边关系的边图;然后根据边图中节点的关系计算网络图中连边的相似度,在节点之间相似度的基础上提出了连边之间相似度的计算方法;再按照相似度由小到大对边图删除边,构建出边图的树状图。树状图的每一层对应网络的一个划分,采用划分密度函数来衡量划分的质量,以此寻找最优的划分。最后将算法应用到Zachary空手道俱乐部网络中,并与GN算法进行对比,实验结果表明EGN算法能够很好地发现重叠社区。 相似文献
6.
对现有的社会网络社团发现算法进行研究,发现存在算法时间复杂度高、准确率低和没有充分利用节点属性信息等问题,提出了一种基于节点相似度的社团发现算法以解决这些问题。综合考虑图的拓扑结构和节点属性信息,结合构造属性扩展图的思想和基于结构情境相似度的思想得到节点的相似度,利用改进的K-means算法对所有节点进行聚类得到社团结构。编程实验结果表明,使用该算法得到的社团准确率较高,算法的时间复杂度为线性的,在带属性的数据集上和不带属性的数据集上的测试结果均验证了算法的有效性。 相似文献
7.
为了准确、快速地发现大规模复杂网络中的局部社区,提出了一种基于节点接近度的局部社区发现算法。该算法以最大度节点作为起始节点,利用节点接近度和局部社区Q值不断搜索其邻居节点,将接近度最大的节点加入初始社区形成新的初始社区;同时,该算法也可以应用于复杂网络全局社区结构的划分。对2个典型复杂网络进行了局部社区挖掘分析,实验结果表明,该算法能够有效识别隐藏在实验网络中的局部社区。针对稀疏网络,该算法的时间复杂度为O(nlog(n)),n为网络节点数。 相似文献
8.
为了解决现有的多标签传播社区划分算法采用的随机顺序策略导致形成的社区划分结果不稳定和社区质量不够高的问题,提出了一种基于节点综合相似度的多标签传播社区划分算法MLPA-NCS。以节点潜在影响力的降序作为节点选择顺序,解决社区结果划分不稳定问题。根据节点的主题相似度和链接相关度计算出节点综合相似度,并以节点综合相似度降序作为更新节点标签时对邻近节点遍历的顺序,提高所划分社区的质量。采用真实数据集和人工网络数据,对多个算法进行对比实验,结果表明算法有效可行,社区划分结果更稳定,社区质量也更高。 相似文献
9.
10.
11.
12.
13.
发现在线社交网络中的社群结构有助于深入研究和分析信息传播规律,同时在社会推荐、群体特征发现等应用领域具有重要的意义。但是现有的社群结构发掘方法多忽略了用户之间的社会属性,导致获取的社群结构难以反映细粒度的结构特征。文中将用户的社会属性引入到社群结构发掘算法中。为了衡量用户的社会交互属性,提出了用户交互相似度模型。基于用户交互相似度模型,提出了一种面向在线社交网络的细粒度社群发掘方法。该算法可以有效衡量用户之间的社会属性,通过层次聚类的手段获得不同粒度的社群,并过滤无关数据。为了验证算法的有效性,以社交网站人人网的用户交互记录为数据集,比较了与其他社区挖掘算法的性能差异。实验结果表明,该方法发掘出的细粒度社群具有较高的准确性,在发现社群之间的不同话题上有着较好的应用。 相似文献
14.
15.
针对基于多标签传播重叠社团挖掘算法COPRA因随机更新策略带来的不稳定性以及需要预先输入参数的局限性等问题,提出一种基于LeaderRank和节点相似性的多标签传播重叠社团挖掘算法.该算法首先利用LeaderRank算法对网络中的节点进行重要性排序从而确定节点的更新顺序,减少标签不必要的更新.在标签传播过程中,根据节点相似性重新设计标签的更新策略,提高算法的稳定性.将算法应用于人工网络和真实网络中进行实验,实验结果表明该算法在挖掘重叠社团上具有较高的准确性和稳定性. 相似文献
16.
本文通过对目前复杂网络的理论研究成果,结合可信网络的一系列研究属性,阐述如何应用复杂网络研究理论去支持网络信任关系的研究。最后对其发展的前景进行简单的预测。 相似文献
17.
社区的发现和分析是复杂网络结构和功能研究中的一个热点。目前广泛应用的社区划分算法存在时间复杂度过高、社区核心数量无法准确量化、划分精度不高等问题。文中提出了一种基于特征向量局部相似性的社区检测算法ELSC。该算法首先计算网络中每个节点的特征向量中心性,在此基础上提出了特征向量局部相似性(ELS)和特征向量吸引性(EA)指标。ELS指标表示节点之间的相似性,用来形成初始社区,在同一个社区内部节点之间的相似性较高,在不同社区节点之间的相似性较低;EA指标同时考虑了局部相似性和特征向量中心性的占比,表示节点之间的吸引性,用来优化初始社区,并在此基础上完成网络的社区划分。该算法由最值确定节点,避免了节点数量阈值不确定的问题。在7个真实网络上将所提算法与6种知名算法的模块度和标准化互信息两个指标进行综合比较,结果表明,该算法具有良好的准确性,并且具有较低的时间复杂度。 相似文献
18.
链路预测技术是分析网络演化的有效方法,也为社会网络事件检测提供了一种新思路。当前采用链路预测进行事件检测的方法大多是从宏观的网络演化入手,也有少数结合节点演化的检测方法,但其稳定性不佳,对事件的敏感性也不够高,不能准确检测事件的发生。基于以上问题,提出了一种基于节点演化分阶段优化的事件检测方法(Node Evolution Staged Optimization,NESO_ED)。首先通过分阶段优化的方法加强事件检测的稳定性,并获取节点指标权重数组;然后根据不同阶段按不同规则选取节点的最佳相似性计算指标,使节点能更好地量化网络演化情况,以此提高事件检测的敏感性。此外,分析了网络演化过程中节点选取指标的变化情况,揭示了事件发生对节点演化产生的不同影响。基于真实社会网络VAST进行对比实验,结果显示NESO_ED方法在事件检测敏感性上比LinkEvent方法提高了227%,比NodeED方法提高了63%,NESO_ED方法的稳定性也比NodeED方法提高了66%,这表明NESO_ED方法能更加准确且稳定地进行事件检测。 相似文献
19.
基于局部相似性的复杂网络社区发现方法 总被引:7,自引:1,他引:7
复杂网络是复杂系统的典型表现形式, 社区结构是复杂网络最重要的结构特征之一. 针对复杂网络的社区结构发现问题, 本文提出一种新的局部相似性度量, 并结合层次聚类算法用于社区结构发现. 相对全局的相似性度量, 本文提出的相似性度量具有较低的计算开销; 同时又能很好地刻画网络的结构特征, 克服了传统局部相似性度量在某些情形下对节点相似性的低估倾向. 为了将局部相似性度量用于社区结构发现, 推广了传统的Ward层次聚类算法, 使之适用于具有相似性度量的任意对象, 并将其用于复杂网络社区结构发现. 在合成和真实世界的网络上进行了实验, 并与典型算法进行了比较, 实验结果表明所提算法的可行性和有效性. 相似文献