首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The global trend in the railway industry is the effort to increase the maximum speed and stability of a train. For an electric railway vehicle to meet this driving performance, stable electric power should be supplied by a catenary system. Various factors affect the current collection performance, most important of which is the dynamic characteristics of a pantograph. In this paper, the sensitivity analysis and design optimization of a pantograph for a high-speed train were conducted using a finite element method. The dynamic catenarypantograph interaction was analyzed by using the commercial finite element analysis software, SAMCEF. The pantograph was modeled as a three degrees of freedom mass-spring-damper system, and the pre-sag of the contact and messenger wire due to gravity was implemented. The span data of a high-speed line was applied in the analysis model. And the dynamic characteristics of the pantograph model were obtained by a performance test. The reliability of the simulation model was verified by comparing the analysis contact force results with the test data. By simulation, the mean contact force and its standard deviation etc. were evaluated, and then sensitivity of the pantograph was analyzed. Based on the sensitivity analysis results, the specification of the pantograph was optimized. In the optimization process, response surface analysis and differential evolutionary algorithm were applied to define the regressive function and to determine the optimum values for stable current collection performance. Finally, the improvement of the current collection performance was verified by comparing the optimum specification results with the original specification.  相似文献   

2.
李文龙 《现代机械》2007,31(2):56-58,61
在建立单臂受电弓模型的基础上,对高速铁路受电弓在运行过程中的接触力性能、几何参数及弓头轨迹等进行优化,结果表明在新的参数下弓网系统的接触力波动得到明显抑制,受电弓动态性能得以提高,为进一步开发高速机车受电弓提供了借鉴。  相似文献   

3.
针对列车高速行驶时弓网系统接触力波动剧烈影响受流质量的问题,充分利用长短时记忆网络对时序预测的优势,提出了弓网接触力长短时记忆网络预测的受电弓主动控制方法。首先以二元受电弓模型作为研究对象,建立其动力学方程,并对其模型进行仿真得到接触力波动数据。然后,将仿真得到的接触力数据作为训练样本输入长短时记忆网络中建立预测模型,以预测下一时刻接触力。最后,以接触力预测值和期望值的差值作为目标控制力输出至磁流变阻尼器,由磁流变阻尼器提供控制力作用到受电弓,从而抑制接触力的动态波动以提高提高列车受流质量。通过实验证明,所提方法对弓网接触力控制更加准确,且大幅降低弓网接触力波动标准差,降幅超过70.13%,且规避了弓网系统离线情况的发生,验证了所提方法在改善弓网受流质量上的稳定性和优越性。  相似文献   

4.
Appropriate contact force is required for the pantograph on the high speed train to collect current from the catenery system without separation. However, at high speed, large aerodynamic lifting force is generated by the contact plate and the body of pantograph, which may cause wear of the contact wire. In this study, to confirm the interface performance of the pantograph on Korea High Speed Train, a method to measure the contact force of the pantograph was proposed and the related measuring system was developed. The forces acting on the pantograph were clarified and a practical procedure to estimate the forces was proposed. A special device was invented and applied to measure the aerodynamic lifting force. Measured contact forces were displayed by the developed system and evaluated based on the criteria.  相似文献   

5.
考虑不同学科间的相互影响及耦合作用对受电弓设计优化的影响,分析了高速受电弓不同性能的设计要求,采用多学科设计优化思想建立了受电弓多学科设计的系统级优化模型及运动学、静力学、动力学和控制学的子系统优化模型;根据不同学科设计参数的耦合关系,采用协同优化方法,获取高速受电弓整体设计优化结果;建立受电弓的三维模型,采用有限元软件ANSYS验证了受电弓优化结果的有效性。结果表明:受电弓多学科协同设计优化不仅满足系统级和各个学科的设计要求,还获得高速受电弓系统的整体最优解或满意解,提高了受电弓的工作性能,降低了弓网接触力的波动,改善了弓网受流质量。  相似文献   

6.
The dynamic characteristics of the catenary-pantograph interface in high-speed trains are evaluated. During a test run signals from accelerometers, load cells, and strain gauges attached to various parts of the pantograph assembly are collected and processed. The signals are analyzed in both the time and frequency domains to determine the dynamic characteristics of the catenary-pantograph interface constituting the critical part of the current collection system of the high-speed train. It is found that there are major frequency components of the pantograph motion at the interface that shift in direct proportion to the train speed as well as components that are stationary in the frequency domain such as the 8.5 Hz component representing the fundamental resonant mode of the panhead assembly. The contact force at the interface shows that while the mean contact force stays almost invariant, the fluctuating component is significantly dependent on the filtering frequency applied to the accelerometer signal during estimation of the inertia force of the panhead. An important implication of the finding is that analytical or numerical investigations based on lumped element models of the pantograph may provide accurate predictions on mean values of the contact force at the catenary-pantograph interface, but are inherently limited in estimating high-frequency fluctuations in the contact force. Since the ratio of the fluctuating portion to the steady-state portion (i.e., the mean value) increases with increased train speed, the predictive capacity of the investigations based on numerical simulations diminishes with increasing train speed.  相似文献   

7.
针对高速列车受电弓区噪声相对较高的问题,提出受电弓减振安装方案,并在模拟实车环境下验证了其降噪效果和可靠性。首先,在某高速列车上进行了线路运行条件下受电弓区振动和噪声测试,分析发现结构振动是该区域噪声传播的重要方式,设计了一种独特的锥形椭圆结构减振座,用于受电弓弹性安装;其次,搭建了模拟现车试验台,验证减振座的降噪效果;最后,进行了总计252万次的疲劳试验以验证减振座的可靠性。试验结果表明,该减振座能够有效减小受电弓振动对车体的激励,从而降低该区域的噪声,降噪效果约为4dB(A),其疲劳可靠性能够满足线路运行要求。  相似文献   

8.
王敏  王俊勇 《山西机械》2013,(6):120-121,124
通过分析受电弓升弓过程和列车速度变化时气囊压力的调节过程,介绍受电弓电气、气动控制原理及自动降弓系统的工作原理,并概括受电弓发生自动降弓的各种情况。  相似文献   

9.
To explore the need for a roof apparatus for an electrical device, such as a pantograph cover or additional cover, the total aerodynamic drag of HEMU-430X, which is a high-speed train developed in South Korea with a maximum speed of more than 400 km/h, was experimentally analyzed using wind-tunnel testing. Experimental models were selected to a 1/20-scale, 5-car HEMU-430X model and three types of pantograph covers (A streamlined type and two wedge types), along with an additional cover. The experimental Reynolds numbers were 370000–620000. The aerodynamic drag of each car was simultaneously measured using load cells. First, the aerodynamic drag of each car without any roof apparatus was analyzed as the baseline model. Second, according to the variations in the three types of pantograph cover configurations, the aerodynamic drag of each car with pantograph covers was compared with the aerodynamic drag of the basic model. Third, the aerodynamic drag of each car with a pantograph cover and additional cover was compared with the results of the baseline model and baseline model with the pantograph cover. Finally, the aerodynamic drag due to the roof apparatus for an electrical device was investigated and analyzed.  相似文献   

10.
弓网系统具有复杂的电气、机械耦合特性,提高弓网受流性能是目前高速铁路系统亟待解决的关键问题,而弓网主动控制则是稳定弓网接触载荷、改善其受流质量的重要措施。从控制理论的角度出发,针对弓网系统存在风载荷与参数不确定性的问题,提出了基于模糊系统的弓网接触载荷反演精确控制方法。具体而言,采用虚拟控制律,逐步反演递推选择Lyapunov函数,设计模糊系统逼近不确定性与虚拟控制律微分,并进行相应的稳定性分析。仿真与实验结果表明,所提出的模糊反演控制策略能减弱弓网不确定性的影响,且能有效抑制弓网接触载荷的波动,并改善其受流质量。  相似文献   

11.
广州地铁三号线受电弓上框架裂纹原因分析及处理措施   总被引:1,自引:0,他引:1  
针对广州地铁三号线受电弓上框架出现裂纹,分析了广州地铁三号线列车受电弓运行过程中导致上框架焊缝开裂的主要影响因素,提出整改方案及措施,以提高受电弓安全运营,确保运营服务质量。  相似文献   

12.
秦登  戴志远  周宁  李田 《中国机械工程》2022,33(20):2509-2519
为研究受电弓下沉对其气动行为和声学行为的影响,建立了考虑安装平台的高速受电弓计算模型,基于计算流体力学和声学类比理论,对受电弓的气动和声学行为展开数值模拟。受电弓下沉高度分别设为100、200、300、400和500 mm,通过风洞试验验证了数值计算方法的合理性。仿真结果表明:随着受电弓安装平台下沉高度的增大,绝缘子和底架迎风面正压减小,受电弓气动阻力减小;安装平台气动阻力先增大后减小,通过优化腔体过渡倾角可显著减小安装平台所产生的气动阻力;当安装平台下沉高度为300 mm、腔体倾角为30°时,受电弓开口、闭口运行时其气动阻力分别减小2.0%、1.8%,整车阻力分别减小1.4%和1.1%;受电弓气动噪声具有明显的主频特性,主要频率约为330 Hz,能量主要集中在400~2500 Hz范围内;安装平台下沉后,绝缘子和底架周围流体流速减小,绝缘子和底座的表面声功率显著降低;安装平台下沉300 mm时,受电弓远场气动噪声最大声压级减小2.02 dBA,平均声压级减小1.31 dBA;受电弓下沉可改善其气动和声学性能。  相似文献   

13.
谢舸  卢琴芬 《机电工程》2011,28(5):605-609
为研究不同丁况下高速列车牵引供电系统的工作状态和性能,根据CRH2型高速列车牵引供电系统的实际结构与参数,采用Matlab/Simulink软件建立了整个系统的仿真模型,模型中牵引变流器采用正弦脉宽渊制(SPWM)和空间矢量脉宽调制(SVPWM)两种方式,牵引电机采用适用于高速列车的瞬态电流控制和转子磁场定向矢量控制策...  相似文献   

14.
In this study, the dynamic response of a catenary system that supplies electrical power to high-speed trains is investigated. One of the important problems which is accompanied by increasing the speed of a high-speed rail, is the performance of stable current collection. Another problem which has been encountered, is maintaining continuous contact force between the catenary and the pantograph without loss of panhead. The dynamic analyses of the catenary based on the Finite Element Method (FEM) are performed to develop a pantograph suitable for high speed operation. The static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing the force of a constantly moving load and the contact force were calculated. It was confirmed that a catenary model is necessary to study the dynamic characteristics of the pantograph system.  相似文献   

15.
建立高速铁路弓网系统的有限元模型并进行动态仿真计算,分析了受电弓以300 km/h速度通过时,选定跨段各吊弦的力时程曲线的特点;对双弓250 km/h、300 km/h工况下的静态力和最大吊弦力进行分析,得到了双弓300 km/h工况下吊弦振动时的最大吊弦力最大可达双弓250 km/h工况下的2倍的结论。用雨流计数法对吊弦的应力时程进行统计计数,得到了包含各吊弦的各级应力幅值、应力均值和应力循环次数的应力统计谱。用Goodman直线对雨流计数得到的应力统计谱进行零均值应力转换,从而获得用于试验加载和寿命预测的疲劳载荷谱。研究结果表明:在同一车速下,安装位置越靠近跨段中点,吊弦越容易发生疲劳断裂;对跨中吊弦而言,沿行车方向先经过的吊弦对车速更为敏感,且车速高于300 km/h时发生疲劳断裂的概率更高。  相似文献   

16.
受电弓动态参数研究   总被引:7,自引:0,他引:7  
建立了受电弓与接触网的数学模型,用广义坐标法,推导了受电弓-接触网耦合系统运动方程,用Matlab语言编制了仿真计算程序,根据仿真计算结果分析了受电弓各动态参数对受流质量的影响,得到了受电弓的优选参数。  相似文献   

17.
受电弓是电力机车的重要部件之一.为分析受电弓的运动学性能,基于Simulink应用矢量法对受电弓进行运动学仿真.推导出受电弓的闭环矢量方程和弓头的矢量方程,构成受电弓的运动矩阵方程.通过Simulink内部的函数来求解运动矩阵方程,建立受电弓的运动学仿真模型,并以国产SS7型机车的受电弓为算例对受电弓进行仿真分析.仿真结果表明,该仿真模型可方便地获得受电弓的运动学参数,为实现受电弓的控制及性能改进提供理论依据.  相似文献   

18.
地铁列车牵引系统主要由以下设备构成:受电弓、高速断路器HSCB、VVVF牵引逆变器、牵引控制单元DCU、牵引电机、制动电阻和司控器。其中最为关键的就是牵引电机,它采用电动驱动,以满足车辆牵引和制动特性的要求;且列车电机型式一般采用结构简单、可靠性好、寿命长、几乎免维护的异步电机。  相似文献   

19.
北京赛德高科铁道电气科技有限责任公司,北京摘要:受电弓质量块模型对于改进受电弓的设计,提高受电弓的性能,具有重要意义。由拉氏方程推导受电弓的非线性运动微分方程并进行线性化,得出等效参数的函数表达式;同时应用牛顿-欧拉法对受电弓进行动力学建模。以某型受电弓为算例,对所建立的模型进行验算。研究结果表明,应用所建立的力学模型,对受电弓的设计具有指导意义。  相似文献   

20.
基于磁流变阻尼器的受电弓主动控制分析与验证   总被引:1,自引:0,他引:1  
作动器是受电弓主动控制系统应用的瓶颈,磁流变阻尼器作为新型材料磁流变液发展而来的智能化元器件具有很多优良特性,将其用于弓网接触力的主动调节。首先建立了精确的磁流变阻尼器正向扩展双曲正切模型和逆向简化双曲正切模型,同时建立了和磁流变阻尼器结合的弓网耦合系统模型;为分析其在不同出力时程下的特性,设计了最优控制器、变结构控制器和模糊控制器对受电弓进行控制,并以SSS400+型受电弓为对象进行验证;最后以实际所需的主动控制力为标准,分析了作动器对理论控制力的跟踪能力。研究结果表明:磁流变阻尼器在不同控制策略的出力时程中均有较好表现,由于其较快的反应时间、较好的跟踪精度和较小的能量消耗,将其作为受电弓主动控制系统中的作动器具有很大的应用价值和发展潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号