首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggested that the temperatures of glass transition and onset crystallization are heating rate-dependent in the supercooled liquid region. Then, the time-temperature-transformation diagram under different heating rates indicates that increasing the heating rate can lead to an increase of the incubation time at the same anneal temperature in the supercooled liquid region. Based on the Arrhenius relationship, we discovered that the incubation time increases by 1.08-1.11 times with double increase of the heating rate at the same anneal temperature, and then verified it by the data of literatures and the experimental results. The obtained curve of the max available incubation time reveals that the incubation time at a certain anneal temperature in the supercooled liquid region is not infinite, and will increase with increasing heating rate until this temperature shifts out of the supercooled liquid region because of exceeding critical heating rate. It is concluded that heating rate must be an important processing parameter of superplastic forming for Zr55Cu30Al10Ni5.  相似文献   

2.
To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemical properties were studied. The TEM images showed that Li(Ni0.5Co0.2Mn0.3)O2 was modified successfully with nano-Al2O3. The discharge capacity retention of Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 maintained about 99% after 200 cycles at high temperature (55 °C), while that of the bare one was only 86%. Also, unlike bare Li(Ni0.5Co0.2Mn0.3)O2, the Al2O3-modified material cathode exhibited good thermal stability.  相似文献   

3.
We investigated the deformation behaviors of Zr_65Cu_17.5Ni_10Al_7.5 in superplastic forming in silicon mould via numerical modeling and experiments. The data needed for the constitutive formulation were obtained from compressive tests to establish a material library for finite-element simulation using a DEFORM 3D software. A constant speed forming process of a micro gear was modeled where the loading force, feature size and amount of deformation in the micro gear in silicon mould were analyzed in detail for the optimal requirements of micro gear forming and the protection of silicon mould. Guided by the modeling parameters, an amorphous metal micro gear was successfully obtained by our home-made superplastic forming system with the optimized parameters (temperature of 683 K, top speed of 0.003 mm/s until the load force reaching limiting value at 1960 N, and a gradually decelerating process for holding the force to the end). Our work gives a good example for optimization of superplastic forming and fabrication of BMGs in microparts.  相似文献   

4.
Since the discovery of the Au-Si metallic amorphous alloy ribbon in 1960 by Duwez and co-workers[1] by rapid quenching, rapid developments have been obtained on the preparation of the amorphous alloy with the rapid quenching technique. However, from 1960 to 1989, the amorphous alloy could be only produced into forms of ribbon, flake, wire and powder due to the limitation of the cooling rate (>105 K/s). In the late 1980s, the Inoue group at Tohoku University in Sendai, Japan, investigated th…  相似文献   

5.
ZrO2/Ni nanocomposite was produced by pulse electrodeposition and its superplastic properties were investigated by the tensile and bulging tests. The as-deposited nickel matrix has a narrow grain size distribution with a mean grain size of 45 nm. A maximum elongation of 605% was observed at 723 K and a strain rate of 1.67×10-3s-1 by tensile test. Superplastic bulging tests were subsequently performed using dies with diameters of 1 mm and 5 mm respectively based on the optimal superplastic forming temperature. The effects of forming temperature and gas pressure on bulging process were experimentally investigated. The results indicated that ZrO2/Ni nanocomposite samples can be readily bulged at 723 K with H/d value (defined as dome apex height over the die diameter) larger than 0.5, indicating that the nanocomposite has good bulging ability. SEM and TEM were used to examine the microstructure of the as-deposited and bulged samples. The observations showed that significant grain coarsening occurs during superplastic bulging, and the microstructure is found to depend on the forming temperature.  相似文献   

6.
Composite powders of nanocrystalline WC-10Co (15wt%),Y2O3 (8mol%) stabilized nanocrystalline ZrO2 (30wt%),industrial cobalt powder (4.5wt%) and submicron Al2O3 (55wt%) composite powders were fabricated by high-energy ball-milling process.The nanocomposite powders were consolidated by microwave sintering process at temperature ranged 1300℃-1550℃ for 15min,respectively.The optimum consolidation conditions,such as temperature,were researched during microwave sintering process.Vickers Hardness of the consolidated cermets was measured by using a Vickers indentation test,and density of specimens was also determined by Archimedes’ principle.Microwave sintering process could not only increase the density of Al2O3-ZrO2-WC-Co cermets and reduce the porosity,but also inhibit abnormal grain growth.  相似文献   

7.
(Ni0.81 Fe0.19)0.66 Cr0.34 has a high resistivity and a crystal structure close to that of Ni0.81 Fe0.19. The electrical and X-ray diffraction measurements prove that a thin NiFeCr seed layer induces a well (111)-orented Ni0.81 Fe0.19 film. Post-annealing treatment improves the magnetic properties of (Ni0.81Fe0.19)0.66 Cr0.34(45Å)/Ni0.81Fe0.19 (150Å)/Ta(55Å) thin film prepared under a deposition field, whereas the inter-diffusion of NiFe/Ta deteriorates the magnetoresistance properties of the film.  相似文献   

8.
The formation and thermal stabilities of Cu46.25Zr46.25-xAl7.5Erx, (x=0 to 8) bulk metallic glasses (BMGs) were investigated. The addition of a small amount of Er (2at%) for replacing Zr effectively improves the glass-forming ability of Cu46.25Zr46.25Al7.5 alloy, and the glassy rod with a diameter of at least 12 mm can be formed. The glass transition temperature (Tg), temperature interval of supercooled liquid region ΔTx (= TxTg, and reduced glass transition temperature Trg (=Tg/T1) of Cu46.25Zr44.25Al7.5Er2 glassy alloy are 699 K, 62 K and 0.607, respectively.  相似文献   

9.
Al2 O3/Al composite was fabricated by the reaction between SiO2 and molten aluminum. The microstructures of the composite obtained under different reaction conditions were analyzed. The formation mechanism of the composite microstructure was discussed. Results show that the reaction kinetics is influenced remarkably by the reaction temperature, reaction time and the quantity of SiO2. The morphologies of Al2O3 have different features, depending on the reaction temperature. The composite has equaxed Al2O3 grains when materials reacted below 1200°C, and the composite is composed of a large number of fine Al2O3 grains and aluninum. The composite has a frame-shaped Al2O3 microstructure at the reaction temperature of above 1250°C. CHENG Xiao-min: Born in 1964 Funded by the National Natural Science Foundation of China (No. 91522)  相似文献   

10.
Zr50Al15Ni10Cu25 amorphous powder was synthesized by mechanical alloying. The effect of Si3N4 addition on the crystallization behavior of the alloy during sintering process was studied. Thermal stability of the powders was performed by differential scanning calorimetry (DSC). The phase and microstructure of the powders and bulk specimens sintered were determined by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that, introducing 0.05% (mass fraction) Si3N4 can enhance the crystallization activation energy of the Zr50Al15Ni10Cu25 amorphous powders, which indicates that Si3N4 addition has hindrance effect on forming crystals from Zr50Al15Ni10Cu25 amorphous powder. However, 0.10% Si3N4 results in the decrease of the crystallization activation energy, which makes its crystallization process easy to occur.  相似文献   

11.
The effect of grain size of CaCO3 and SiO2 on the formation of C3S under various conditions, such as rapid heating rate(800 ℃/min), normal heating rate(30 ℃/min) and in the presence or absence of ZnO, was studied. The results show that the decomposition temperature of CaCO3, the temperature of appearance of liquid phase and the f-CaO content descend when the grain size of CaCO3 and SiO2 becomes smaller, which attributes to the reactive activity enhancement of powders due to the decrease of the particle size. When the grain size of CaCO3 and SiO2 is below 1 μm, the rate of the formation of C3S is greatly raised. A rapid sintering rate and the presence of ZnO have an important effect on the formation of C3S and can lower the temperature of the formation of C3S by about 50 ℃.  相似文献   

12.
The erosion resistance tests were used to research the erosion wear behavior of CaO-Al2O3-SiO2 system glass-ceramic. With the orthogonal test method, the factors thai affect the erosion wear of CaO-Al2O3-SiO2 system galss-ceramic such as pacticles property, impact angle, impact time, size of particles were discussed. The results show that erosion rate rises along a straight line at the early period of erosion wear. With the impact time increased, the erosion rate deviates from original staight line, tendency of the erosion rate increases, With the size of paricle increased , it will have more kinetic energy, the erosion rate of the surface of glass-ceramics ploate rises.  相似文献   

13.
Al18B4O33 whisker was coated by SnO2 particles using a chemical precipitation method, and an aluminum matrix composite reinforced by the coated whisker was fabricated by squeeze casting technique. It is found that the SnO2 coating can react with aluminum matrix during squeeze casting process, and Sn particles are induced near the interface between Al18B4O33 whisker and matrix. The tensile test at room temperature indicated that the tensile strength of Al18B4O33 whisker reinforced aluminum matrix composite can be enhanced by suitable content of SnO2 coating. The composites with various whisker coating contents exhibit maximum tensile plasticity at about 300 ℃, and the composite with a suitable whisker coating content could enhance its tensile plasticity evidently, which suggest that an Al18B4O33 whisker-Al composite with both high strength at room temperature and high formability at elevated temperature can be designed.  相似文献   

14.
Classical molecular dynamics(MD) were conducted to study the structure and energy distribution of ZrxCu90-xAl10(x=20, 30, 40, 50, 60, 70) ternary alloys. When the Zr composition is 30%, the glass transition temperature reaches the maximum value and the Zr30Cu60Al10 owns high glass forming ability(GFA). Analysis of the short-range structure shows that there are more low-energy Zr-centered polyhedron with high coordination number(CN...  相似文献   

15.
Effects of Al2O3 and Ni as the additives on the sinterability, microstructure and mechanical properties were systematic studied. The experimental results show that only a relative density about 96.2% of hot-pressing TiB2-30%Al2O3 can be attained due to the plate-like TiB2 particle and its random orientation and excessive Al2O3 grain growth. When sintering temperature is higher than 1 700 ℃, TiB2 grain growth can be found, which obvious improves flexural strength of TiB2 matrix but decreases toughness. It seems that mechanical properties of TiB2-Al2O3 composites are mainly depended on relative density besides grain growth. otherwise, they will be determined by relative density and TiB2 matrix strength together. Anyway, Al2O3 addition can weaken the grain boundary and thus improve the toughness of the materials. A flexural strength of 529 MPa, Vickers hardness of 24.8 GPa and indentation toughness of 4.56 MPa·m1/2 can be achieved inTiB2-30vol% Al2O3.  相似文献   

16.
The fabrication process of Cu/Al2O3/MgF2/Au double-barrier metal/insulator/metal junction (DMIMJ) was introduced, and more stable light emission from this junction was successfully observed. The light emission physical mechanism of the junction was discussed. Results show that light emission spectrum of this structure locates at wavelength of 250–700 nm with two peaks at around 460 nm and 640 nm, which moves towards shorter wavelength region in comparison with that of the Al/Al2O3/Au junction. The light emission efficiency of this junction ranges from 0.7×10−5–2.0×10−5, which is 1 to 2 orders higher than that of the single-barrier Al/Al2O3/Au junction. The improved properties of this structure should be due to the electrons resonant tunneling effect in the double-barrier.  相似文献   

17.
By means of transient plastic phase process, the Al2O3-SiC-Me composites were produced throungh adding metal aluminium and silicon-powder to Al2O3-SiC materials. Under the condition of the same content of silicon and aluminium mixed-powder, the effect of silicon powder addition on properties of Al2O3-SiC-Me composites was studied by means of XRD and EPMA analyses in the temperature range of 300°–1600°C. The results indicated that the content of metal phase in the sample at 1600°C increases with increasing silicon powder content. At the same time, when the temperature is lower than 1100°C, the strength of samples gradually increases with increasing temperature. However when the temperature is higher than 1100°C, the strength of samples gradually decreases with increasing temperature, and this change is very small. The results also indicated that at the same sintering temperature, the sample with 6% silicon powder has the maximum strength. Supported by the Chen Yunbo Academician Fund (Grant No. 2007CY021)  相似文献   

18.
By introducing other oxide materials (SiO2, Al2O3, CaO) into the red mud, all materials were melted into aluminosilicate glasses. On the basis of 17.2Fe2O3-5.7CaO-18.2Al2O3-50SiO2-5.9Na2O-3TiO2 system glasses, [Al2O3]/[CaO] mass ratio changed further. For each sample, the assignment of IR absorption bands for aluminosilicate glasses was investigated by Fourier transform infrared spectroscopy and the glasstransition temperature and high temperature molten state were studied by differential scanning calorimetry. According to X-Ray diffraction and differential scanning calorimetry, the behavior of crystallization was analyzed. The results show that the glass structures of three-dimensional network are depolymerized and the amount of non-bridging oxygens increases gradually with network modifier CaO replacing network intermediate Al2O3 when [Al2O3]/[CaO] ratio of aluminosilicate glass decreases from 4.05 to 0.66, resulting in decreasing density, melting temperature, crystallization peak temperature and glass-transition temperature. As [Al2O3]/[CaO] mass ratio decreases, the concentration of crystallized phase maghemite (γ-Fe2O3) will increase which provides the possibility for production of black glass-ceramic further.  相似文献   

19.
The oxidation behavior of Al2O3/TiAl in situ composites fabricated by hot-pressing technology was investigated at 900° in static air. The results indicate that the mass gains of the composites samples decrease gradually with increasing Nb2O5 content and the inert Al2O3 dispersoids effectively increase the oxidation resistance of the composites. The higher the Al2O3 dispersoids content, the more pronounced the effect. The primary oxidation precesses obey approximately the linear laws, and the cyclic oxidation precesses follow the parabolic laws. The oxidized sample containing Ti2AlN and TiAl phases in the scales exhibits excellent oxidation resistance. The oxide scale formed after exposure at 900°C for 120 h is multiple-layered, consisting mainly of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner TiO2+Al2O3 mixed layer. From the outer layer to the inner layer, TiO2+Al2O3 mixed layer presents the transit of Al-rich oxide to Ti-rich oxide mixed layer. Near the substrate, cross-section micrograph shows a relatively loose layer, and micro- and macro-pores remain on this layer, which is a transition layer and transferres from Al2O3+TiO2 scale to substrate. The thickness of oxide layer is about 20 μm. It is also found that continuous protective alumina scales can not be observed on the surface of oxidation scales. Ti ions diffuse outwardly to form the outer TiO2 layer, while oxygen ions transport inwardly to form the inner TiO2+Al2O3 mixed layer. Under long-time intensive oxidation exposure, the internal Al2O3 scale has a good adhesiveness with the outer TiO2 scale. No obvious spallation of the oxide scales occurs. The increased oxidation resistance by the presence of in situ Al2O3 particulates is attributed to the enhanced alumina-forming tendency and thin and dense scale formation. Al2O3 particulates enhance the potential barrier of Ti ions from M/MO interface to O/MO interface, thereby the TiO2 growth rate decreases, which is also beneficial to improve the oxidation resistance. Moreover, the multi-structure of the TiO2+Al2O3 mixed layer decreases the indiffusion of oxygen ions and also avails to improve the high temperature oxidation resistance of the as-sintered composites. Supported by the Special Program for Education Bureau of Shaanxi Province, China (Grant No. 08JK240) and Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology, China (Grant No. SLGQD0751)  相似文献   

20.
The ZrO2/TiO2 pillared laponite (Ti-Zr-lap) photocatalysts were prepared with intercalation reaction by supercritical fluid drying (SCFD),and characterized by XRD,TEM,SEM and BET surface area analysis,and the photocatalytic properties of Ti-Zr-lap were investigated by degradation of azo dye acid red B (ARB).The results showed that the ZrO2/TiO2 pillared structures in laponite could be formed,with the mass fraction of (Zr4++Ti4+)/laponite (Xm) increasing,the basal spacing and the BET surface area of Ti-Zr-lap significantly increased.The Ti-Zr-lap used as photocatalyst had the advantages of stable and porous layered structure,large surface area with the anatase type TiO2.Compared with the Ti-Zr-lap dried by air drying,the Ti-Zr-lap dried by SCFD showed better photocatalytic property which was very close to that of P25 TiO2.Using the Ti-Zr-lap as photocatalyst with the optimum Xm of 0.16 and the calcination temperature of 500 ℃,under the conditions of the initial concentration of ARB 20 mg/L,photocatalyst concentration of 1.5 g/L and irradiation time 60 min,the decoloring rate of ARB could achieve 98.3%,indicating that the Ti-Zr-lap had excellent photocatalytic property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号