首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用冷轧+两相区温轧退火(CR+WR+IA)热处理工艺,研究了两相区退火时间对超细晶铁素体与奥氏体中组织形貌演变、C和Mn元素配分行为以及力学性能的影响。结果表明,冷轧试验钢经两相区形变退火处理后,获得了由铁素体、残余奥氏体或新生马氏体组成的超细晶复相组织。在645℃随退火时间的延长,形变马氏体向逆相变奥氏体配分的C、Mn元素增多,C、Mn元素富集位置增加,同时富Mn区形变马氏体回复再结晶现象明显;伴随少量碳化物溶解,试验钢的屈服强度由741持续降低到325MPa。两相区退火10min时,试验钢力学性能最佳,此时抗拉强度达到最大值1141MPa,断后伸长率及均匀伸长率分别为236%和181%,强塑积达到26928MPa·%。  相似文献   

2.
A Nb-microalloyed structural steel with ferrite-pearlite microstructure was subjected to cold rolling and intercritical annealing to produce ultra-fine grained dual phase microstructure. Optical and transmission electron microscopy techniques were employed to characterise the microstructure. Initial results showed that the intercritical annealing (at 790°C for 90s) of samples rolled to a true strain of 2.4 resulted in a significant grain refinement from the average initial grain size of 20 μm to 1–2 microns. The microstructure primarily consisted of UFG ferrite matrix with homogeneously distributed islands of plate martensite with volume fraction of 27%.  相似文献   

3.
Effects of annealing treatment from 923 K to 1023 K (650 °C to 750 °C) prior to cold rolling on the edge cracking phenomenon of a ferritic lightweight steel were investigated. The edge cracking was severely found in the hot-rolled and 923 K (650 °C)-annealed steels after cold rolling, whereas it hardly occurred in the 1023 K (750 °C)-annealed steel. As the annealing temperature increased, lamellar κ-carbides were dissolved and coarsened, and most of the κ-carbides continuously formed along boundaries between ferrite and κ-carbide bands disappeared. Microstructural observation of the deformed region of tensile specimens revealed that the removal of band boundary κ-carbides reduced the difference in tensile elongation along the longitudinal direction (LD) and transverse direction (TD), which consequently led to the reduction in edge cracking. The 1023 K (750 °C)-annealed steel showed fine ferrite grain size, weak texture, and decomposed band structure after subsequent cold rolling and intercritical annealing, because κ-carbides actively worked as nucleation sites of ferrite and austenite. The present annealing treatment prior to cold rolling, which was originally adopted to prevent edge cracking, also beneficially modified the final microstructure of lightweight steel.  相似文献   

4.
In this study, the effect of finish rolling temperature and coiling temperature on the microstructure and mechanical properties of high-Al-low-Si dual-phase (DP) steels is explored. Two different finish rolling temperatures (850 and 790°C) and three different coiling temperatures (200, 250 and 300°C) were studied. The results indicated that all the different processing conditions led to ferrite-martensite DP microstructure. With the decrease in finish rolling temperature, the volume fraction of ferrite was increased and martensite content was decreased. When the coiling temperature was increased to 300°C, autotempered martensite was obtained, which led to the softening of martensite and decrease in tensile strength and strain hardening ability, but higher post-necking elongation. Moreover, the nanoscale Nb-based carbides played a crucial role in refining the microstructure of hot-rolled high-Al-low-Si DP steel. EBSD (Electron Backscattered Diffraction) analysis revealed that the ferrite grains were fine, and decrease in finish rolling temperature and coiling temperature led to an increase in low-angle boundaries. When the finish rolling temperature was decreased to 790°C and coiling temperature was decreased to 200°C, the steel had excellent mechanical properties with tensile strength of 885?MPa, uniform and total elongation of 16.0 and 25.94%, respectively, and the product of tensile strength and total elongation was 20?264?MPa%. The improvement of strength and plasticity can be attributed to the fraction of ferrite and martensite, precipitation of NbC, fine microstructure.  相似文献   

5.
The microstructural evolutions of the cold rolled Fe-0.1C-5Mn steel during intercritical annealing were ex- amined using combined advanced techniques. It was demonstrated that intercritical annealing results in an ultrafine granular ferrite and austenite duplex structure in cold rolled 0.1C-5Mn steel. The strong partitioning of manganese and carbon elements from ferrite to austenite was found during intercritical annealing by scanning transmission elec- tron microscopy (STEM) and X-ray diffraction (XRD). Strong effects of boundary characters on the austenite for- mation were indicated by austenite fast nucleation and growth in the high angle boundaries but sluggish nucleation and growth in the low angle boundaries. The ultrafine grained duplex structure in 0.1C-5Mn was resulted from the the sluggish Mn-diffusion and the extra high Gibbs free energy of ferrite phase. Based on the analysis of the micro- structure evolution, it was pointed out that the intercritical annealing of the medium Mn steels could be applied to fabricate an ultrafine duplex grained microstructure, which would be a promising approach to develop the 3rd genera- tion austomobile steels with excellent combination of strength and ductility.  相似文献   

6.
Present study concerns the effect of deformation and heat treatment on the microstructure and mechanical properties of a duplex stainless steel. While hot rolling causes the coarse distribution of the constituent phases (ferrite and austenite), 50% cold rolling results into the elongated and splintered two — phase structure. Supersaturated ferrite structure established by water quenching from 1300°C results into the strengthening due to the formation of fine dispersed austenite precipitates within ferrite grain after isothermal heat treatment (1000°C, 0.5 hour). Duplex structure consisting of ferrite and austenite in a fine-grained form is obtained after isothermal heat treatment of cold rolled sample. Cold deformed and heat treated steel exhibits best combination of strength and ductility among all the investigated steel samples.  相似文献   

7.
In the current study, a novel ultra-low carbon, high-molybdenum-bearing microalloyed steel has been thermomechanically processed. Transformation of this steel during continuous cooling has been assessed. Variation in the microstructure and mechanical properties at different finish rolling temperatures has been studied. The average grain size, misorientation of grain boundary, and distribution of ferrite grains have been analyzed by using electron backscatter diffraction. The lower yield strength (251 to 377?MPa) with moderate tensile strength (406 to 506?MPa) along with high ductility (30 to 47?pct) has been achieved in the selected range of finish rolling temperatures. Superior impact toughness value in the range of 153 to 162?J is obtained in the subsize specimen even at subzero temperatures (233?K [?40?°C]), which is attributed to fine average ferrite grain size. The acicular ferrite dominated microstructure obtained at the 1023?K (750?°C) finish rolling temperature is the most attractive microstructure for pipeline applications due to its excellent combination of strength and toughness.  相似文献   

8.
衣海龙  徐洋  孙明雪  刘振宇 《钢铁》2013,48(2):49-52
 以一种屈服强度为600MPa的热轧高强钢为研究对象,进行了超快冷工艺与层流冷却工艺的对比试验,对试验钢进行了力学性能、SEM、TEM及EDS分析。结果表明:与层流冷却工艺相比,超快冷工艺有效提高了钢的性能,屈服强度和抗拉强度分别提高了90和60MPa,其屈服强度、抗拉强度和断后伸长率分别为670、740MPa及19%,-20℃冲击功为105J,具有良好的强度及韧性。经过超快冷后,试验钢的组织为细化的铁素体,其强化相为细小的铁素体及细小析出物。  相似文献   

9.
 CO2-shielded welding experiments of newly developed, 780 MPa super-high strength heavy-duty truck crossbeam steel were conducted, and the microstructure, microhardness, mechanical properties, and impact toughness of the welded joint were studied. The evolution of the microstructure of the welded joint occurred as follows: welding seam (acicular ferrite+proeutectoid ferrite)→fusion zone (granular bainite-long strip M/A island)→coarse grain zone (granular bainite-long strip or short bar M/A island)→fine grain zone (ferrite+pearlite+blocky M/A island)→mixed grained zone (ferrite+granular bainite+blocky M/A island)→base metal (proeutectoid ferrite+granular bainite-blocky or granular M/A island). Increasing the density of the grain boundaries can effectively improve the impact toughness, and the blocky M/A island hindered crack propagation more effectively than the long strip M/A island. The new hot-rolled 780 MPa super-high strength steel had excellent weldability. The welding technology was applied under the following conditions: welding voltage was 20 to 21 V, welding current was 200 to 210 A, and the gas flow rate was 25 L/min.  相似文献   

10.
为提升产品的档次和效益,通过科学的、经济的成分设计以及合理的冶炼、热轧、酸轧、连续退火全流程工艺控制,成功开发出了屈服强度小于140 MPa、平均塑性应变比大于2.30、抗鳞爆敏感系数TH大于6.7 min/mm2的冷轧超深冲搪瓷用钢DC06EK产品。微观组织分析表明,DC06EK中含有均匀、等轴的铁素体组织,以及大量细小的、弥散分布的TiS、TiN等第二相析出粒子,由此保证了钢板兼有优良的成形性能和抗鳞爆性能。工业试用的结果进一步证实了该产品具有大批量推广入市的广阔前景。  相似文献   

11.
Microstructures and mechanical properties of 316L stainless steels with dual phases austenite prepared by an aluminothermic reaction casting were explored. It is found that the steels consist of nano- and micro-crystalline austenite phases, a little δ ferrite and contaminations. Before and after annealing at 1073 K and 1273 K (800 °C and 1000 °C), average grain sizes of the nanocrystalline austenite phase are about 32, 31, 38 nm, respectively. Tensile strength increases first from 371 to 640 MPa and then decreases to 454 MPa. However, elongation ratio increases gradually from 16 to 23 and then 31 pct after annealing. The results illustrate that the steel after annealing at 1073 K (800 °C) has better properties, also indicating that combination of dual nano- and micro-crystalline austenite phase is conductive to improving tensile properties of materials.  相似文献   

12.
累积叠轧焊制备超细晶IF钢微观组织与力学性能   总被引:8,自引:0,他引:8  
采用累积叠轧焊方法制备了超细晶IF钢,对其微观组织和力学性能进行了分析。实验结果表明,累积叠轧后IF钢的平均晶粒尺寸为700nm;抗拉强度为621.3MPa,达到冷轧IF钢抗拉强度的2.02倍,屈强比σ0.2/σb为0.81。在累积叠轧过程中产生的氧化物夹杂导致超细晶IF钢的脆化。  相似文献   

13.
The control of the amount of solute carbon in ultra low carbon Ti IF steels during ferrite rolling and subsequent recrystallization is of prime importance for the development of an appropriate recrystallization texture and for the production of thin deep drawable hot strips. In the present work, the effect of the solute carbon content and the rolling conditions on the recrystallization texture after ferrite rolling and on the corresponding Lankford value was quantified. Therefore, ultra low carbon Ti IF steels with different sulphur and titanium contents were rolled in the ferrite region, in order to obtain a variation in solute carbon content (from 0 to about 10 ppm) at the ferritic rolling temperatures. It was shown that a deep drawing grade (rmean> 1.4) can be obtained if the chemical composition of the steel guarantees a complete stabilisation of the solute carbon in the austenitic temperature region and if sufficient strain (85%) is given in the finishing train at temperatures lower than about 800°C. It can be concluded that the sulphur and titanium contents have to be chosen slightly higher in comparison to the conventional Ti IF steel grades used for cold rolling and annealing.  相似文献   

14.
Ultra‐fine grained ferrite steels have higher strength and better toughness than the normal ferrite steels because of their micrometer or sub‐micrometer sized grains. In this paper the ultra‐fine grained steel SS400 is welded by CO2 laser. The shape of weld, cooling rate of HAZ, width of HAZ, microstructures and mechanical properties of the joint are discussed. Experimental results indicate that laser beam welding can produce weld with a large ratio of depth to width. The cooling rate of HAZ of laser beam welding is fast, the growth of prior austenite grains of HAZ is limited, and the width of weld and HAZ is narrow. The microstructures of weld metal and coarse‐grained HAZ of laser beam welding mainly consist of BL + M (small amount). With proper laser power and welding speed, good comprehensive mechanical properties can be acquired. The toughness of weld metal and coarse‐grained HAZ are higher than that of base metal. There is no softened zone after laser beam welding. The tensile strength of a welded joint is higher than that of base metal. The welded joint has good bending ductility.  相似文献   

15.
Phase evolution in a 0.36 wt% C steel has been studied by thermodynamic calculation and dilatometric analysis with an aim to achieve high strength TRIP‐assisted steel with bainitic microstructure. The equilibrium phase fraction calculated as the function of temperature indicated the formation of δ‐ferrite (≈98%) at 1417°C. In contrast, similar calculation under para‐equilibrium condition exhibited transformation of δ‐ferrite to austenite at the temperature below 1300°C. During further cooling two‐phase (α+γ) microstructure has been found to be stable at the intercritical temperature range. The experimentally determined CCT diagram has revealed that adequate hardenability is achievable in the steel under continuous cooling condition at cooling rate >5°C s?1. In view of the aforesaid results, the steel has been hot rolled and subjected to different process schedule conducive to the evolution of bainitic microstructure. The hot rolled steel has exhibited reasonably good tensile properties. However, cold deformation of the hot rolled sample followed by intercritical annealing and subsequent isothermal bainitic transformation has resulted in high strength (>1000 MPa) with attractive elongation due to the favorable work hardening condition during plastic deformation offered by the multiphase microstructure.  相似文献   

16.
A high strength steel with yield strength on the order of 600 MPa was developed successfully with only addition of titanium alloying element based on a low-carbon steel.The results showed that the hot deformation accelerated ferrite and pearlite transformation and retarded bainite transformation under continuous cooling condition.The microstructure of this steel was mainly composed of fine grained ferrite and carbides distributing along the ferrite grain boundaries.The yield and tensile strengths of steels ...  相似文献   

17.
采用CCT-AY-Ⅱ型钢板连续退火机模拟分析了退火时间对中锰TRIP钢0.1C-7Mn组织性能的影响规律.利用扫描电镜、透射电镜、电子背散射衍射和X射线能量色散谱等研究了不同工艺下制备的0.1C-7Mn钢的微观组织和成分,利用X射线衍射法测量了残留奥氏体量,利用拉伸试验测试了其力学性能.0.1C-7Mn钢在650℃保温3 min退火后获得最佳的综合力学性能,其强度为1329 MPa,总延伸率为21.3%,强塑积为28 GPa·%.分析认为,0.1C-7Mn钢的高塑性是由亚稳奥氏体的TRIP效应和超细晶铁素体共同提供的,而高强度是由退火冷却过程中奥氏体转变的马氏体和拉伸变形过程中TRIP效应转变的马氏体的强化作用造成的.   相似文献   

18.
Ultrafine-grained dual phase microalloyed V-Nb steel with ultimate tensile strength of 1371 MPa and uniform elongation of 16 pct characterized by bimodal ferrite grain structure was obtained through warm rolling and subsequent intercritical annealing. The bimodal ferrite grain structure with uniform dispersion of Nb/V carbides and strong γ-fiber texture promoted high strain hardening rate and high uniform elongation and high strength is attributed to ultrafine-grained ferrite and martensite.  相似文献   

19.
The impact toughness of powder metallurgy (PM) steel is typically inferior, and it is further impaired when the microstructure is strengthened. To formulate a versatile PM steel with superior impact, fatigue, and tensile properties, the influences of various microstructures, including ferrite, pearlite, bainite, and Ni-rich areas, were identified. The correlations between impact toughness with other mechanical properties were also studied. The results demonstrated that ferrite provides more resistance to impact loading than Ni-rich martensite, followed by bainite and pearlite. However, Ni-rich martensite presents the highest transverse rupture strength (TRS), fatigue strength, tensile strength, and hardness, followed by bainite, pearlite, and ferrite. With 74 pct Ni-rich martensite and 14 pct bainite, Fe-3Cr-0.5Mo-4Ni-0.5C steel achieves the optimal combination of impact energy (39 J), TRS (2170 MPa), bending fatigue strength at 2 × 106 cycles (770 MPa), tensile strength (1323 MPa), and apparent hardness (38 HRC). The impact energy of Fe-3Cr-0.5Mo-4Ni-0.5C steel is twice as high as those of the ordinary high-strength PM steels. These findings demonstrate that a high-strength PM steel with high-toughness can be produced by optimized alloy design and microstructure.  相似文献   

20.
High strength multiphase steels have been developed consisting of combination of pearlite, tempered martensite and small amount of ferrite, by suitable heat treatment of a high carbon low alloy rail steel (0.7 % C). The desired microstructure has been obtained by holding fully homogenized steel in pearlitic range for small durations followed by water quenching and subsequent tempering at 773 K for 18 h. Variation in mechanical properties has been studied with the change in volume fraction of different phases. Yield strength, ultimate tensile strength and elongation are observed to be in the range of 500–1,000 MPa, 900–1,185 MPa and up to 16.8 %, respectively. Continuous and discontinuous yielding along with substantial work hardening has been explained as a function of tempered martensite content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号