首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a growing interest in metal-ceramic bonding for wide range of applications in electronic devices and high technology industry for fabrication of metal matrix composites and bonding of ceramic components to metals. The object of the work was to study the effect of Ti, Nb, and Ti + Nb thin films deposited by PVD method on alumina substrates on structure and bond strength properties of Al/Al2O3 joints. The joints were fabricated using the results of a wetting experiment and the sessile drop method at a temperature of 1223 K in a vacuum of 0.2 MPa for 30 min of contact. The structure of the metal/ceramic interface was investigated using scanning electron microscopy. The elemental distribution at the metal-ceramic interface was analyzed using energy dispersive x-ray spectroscopy. Transmission electron microscopy was also used to investigate some aspects of the metal/ceramic interface. The bond strength properties of joints were measured using shear test. The shear strength results demonstrated significant improvement of shear strength of Al/Al2O3 joints due to the application of Ti + Nb thin film on alumina substrate. Microstructural investigations of the interface indicated that Al/coating/Al2O3 couples have diffusion transition interface which influences the strengthening of these joints. A conclusion could be drawn that the presence of thin film layers changes the character of interaction and leads to the formation of new reaction products in the bonding layer.  相似文献   

2.
We studied the microstructural and electrochemical properties of Ti-doped Al2O3 (Ti-Al2O3) coated LiCoO2 thin films depending on the Ti composition. The 1.27 at.% Ti-Al2O3 coated films had an amorphous structure with better conductivity than that of pure Al2O3 films. The Ti-Al2O3 coating layer effectively suppressed the dissolution of Co and the formation of lower Li conductivity SEI films at the interface between the LiCoO2 film and electrolyte. The Ti-Al2O3 coating improved the cycling performance and capacity retention at high voltage (4.5 V) of the LiCoO2 films. The Ti-Al2O3 coated LiCoO2 films showed better electrochemical properties than did the pure Al2O3 coated LiCoO2 films. These results were closely related to the enhanced Li-conductivity and interfacial quality of the Ti-Al2O3 film.  相似文献   

3.
We studied the dependence of Al2O3 coating thickness and annealing conditions on the surface morphology and electrochemical properties of Al2O3 coated LiCoO2 films. The optimum coating thickness allowing for the highest capacity retention was about 24 nm. A sample consisting of Al2O3 coated on annealed LiCoO2 film with additional annealing at 400 °C had a uniform coating layer between the coating materials and cathode films. This sample showed the best capacity retention of ∼91 % with a charge-cut off of 4.5 V after 30 cycles, while the bare cathode film showed a capacity retention of ∼32 % under the same conditions. The formation of second phases such as Co-Al-O was observed in the coating films by X-ray photoelectron spectroscopy (XPS). The Co-Al-O containing samples showed a higher initial capacity because of their smaller grain size, but less capacity retention than the Al2O3 containing samples.  相似文献   

4.
Al2O3/ZrO2/Al2O3 gate stacks were prepared on ultrathin SOI (Silicon on insulator) substrates by ultrahigh vacuum electron beam evaporation and post-annealed in N2 at 450°C for 30 min. Three clear nanolaminate layered structure of Al2O3(2.1 nm)/ZrO2(3.5 nm)/Al2O3(2.3 nm) was observed with a high-resolution cross-sectional transmission electron microscope (HR-XTEM). High frequency capacitance voltage (C-V) characteristics of a fully depleted (FD) SOI MOS capacitor at 1 and 5 MHz were studied. The minority carriers determine the high frequency C-V properties, which is opposite to the case of bulk MOS capacitors. The series resistance of the SOI substrate is found to be the determinant factor of the high frequency characteristics of FD SOI MOS capacitors. This article is based on a presentation in “The 7th Korea-China Workshop on Advanced Materials” organized by the Korea-China Advanced Materials Cooperation Center and the China-Korea Advanced Materials Cooperation Center, held at Ramada Plaza Jeju Hotel, Jeju Island, Korea on August 24≈27, 2003.  相似文献   

5.
In this paper, the effect of nano-Si3N4 additives and plasma treatment on the wear behavior of Al2O3-8YSZ ceramic coatings was studied. Nano-Al2O3, nano-8YSZ (8 wt.% Y2O3-stabilized ZrO2) and nano-Si3N4 powders were used as raw materials to fabricate four types of sprayable feedstocks. Plasma treatment was used to improve the properties of the feedstocks. The surface morphologies of the ceramic coatings were observed. The mechanical properties of the ceramic coatings were measured. The dry sliding wear behavior of the Al2O3-8YSZ coatings with and without Si3N4 additives was studied. Nano-Si3N4 additives and plasma treatment can improve the morphologies of the coatings by prohibiting the initiation of micro-cracks and reducing the unmelted particles. The hardness and bonding strength of AZSP (Al2O3-18 wt.% 8YSZ-10 wt.% Si3N4-plasma treatment) coating increased by 79.2 and 44% compared to those of AZ (Al2O3-20 wt.% 8YSZ) coating. The porosity of AZSP coating decreased by 85.4% compared to that of AZ coating. The wear test results showed that the addition of nano-Si3N4 and plasma treatment could improve the wear resistance of Al2O3-8YSZ coatings.  相似文献   

6.
In this study, yttrium oxide (Y2O3) films were synthesized from a metal-ethylenediaminetetraacetic (metal-EDTA) complex by employing a H2-O2 combustion flame. A rotation apparatus and various cooling agents (compressed air, liquid nitrogen, and atomized purified water) were used during the synthesis to control the thermal history during film deposition. An EDTA·Y·H complex was prepared and used as the staring material for the synthesis of Y2O3 films with a flame-spraying apparatus. Although thermally extreme environments were employed during the synthesis, all of the obtained Y2O3 films showed only a few cracks and minor peeling in their microstructures. For instance, the Y2O3 film synthesized using the rotation apparatus with water atomization units exhibited a porosity of 22.8%. The maximum film’s temperature after deposition was 453 °C owing to the high heat of evaporation of water. Cooling effects of substrate by various cooling units for solidification was dominated to heat of vaporization, not to unit’s temperatures.  相似文献   

7.
At T6 state, Al–Zn–Mg–Cu aluminum matrix composites reinforced with Al2O3 particles generated in situ were subjected to high pulsed magnetic fields at different magnetic induction intensities (B = 2, 3 and 4 T). The results show that the dislocation densities in the treated samples increased with increasing B, and the magnetoplastic effect was determined to be the primary cause. The effect of the magnetic field is believed to alter the spin state of free electrons between dislocations and obstacles from the singlet state (associated with high bonding energy) to the triplet state (low bonding energy). The maximum ultimate tensile strength of 532 MPa was obtained at B = 4 T with 30 pulses, which was 20.7% higher than that of the initial sample, primarily because of dislocation strengthening. At B = 2 T, the elongation was at its maximum of 9.3%, representing an increase of 12% compared with the initial sample, while the associated ultimate tensile strength (447 MPa) was still higher than that of the untreated sample (440 MPa). The relationship between mechanical properties and microstructure was analyzed, and the improved properties observed in this work are explained by the transition of the electron spin state and the piling up of dislocations.  相似文献   

8.
A novel approach to prepare a coating system containing an in situ grown Cr2O3 diffusion barrier between a nickel top layer and 310SS was reported. Cold spraying was employed to deposit Ni(O) interlayer and top nickel coating on the Cr-contained stainless steel substrate. Ni(O) feedstock was prepared by mechanical alloying of pure nickel powders in ambient atmosphere, acting as an oxygen provider. The post-spray annealing was adopted to grow in situ Cr2O3 layer between the substrate and nickel coating. The results revealed that the diffusible oxygen can be introduced into nickel powders by mechanical alloying. The oxygen content increases to 3.25 wt.% with the increase of the ball milling duration to 8 h, while Ni(O) powders maintain a single phase of Ni. By annealing the sample in Ar atmosphere at 900 °C, a continuous Cr2O3 layer of 1-2 μm thick at the interface between 310SS and cold-sprayed Ni coating is formed. The diffusion barrier effect evaluation by thermal exposure at 750 °C shows that the Cr2O3 oxide layer effectively suppresses the outward diffusion of Fe and Cr in the substrate effectively.  相似文献   

9.
Al2O3/Cu composites were prepared by external addition of Al2O3, and the effect of Al2O3 content on microstructure, density, hardness, electrical conductivity and vacuum electrical breakdown properties was studied. The results show that with increasing Al2O3 addition, the density of Al2O3/Cu composite significantly decreases, the hardness sharply increases and then slowly decreases, but the electrical conductivity invariably decreases. The vacuum breakdown test shows that with increasing Al2O3 addition, the breakdown strength first sharply increases and then decreases when the Al2O3 content exceeds 1.2 wt.%; the chopping current always exhibits a decreasing trend and the arc life first increases and then decreases. According to the morphology of arc erosion and analysis, the arc erosion resistance increases and then decreases sharply. In the range of experiments, the optimal arc erosion resistance of Al2O3/Cu composite can be obtained with the addition of 1.2 wt.% Al2O3.  相似文献   

10.
Phase formation sequence of the yttrium aluminates in the Y2O3-Al2O3-SiC ternary system as temperature increases were investigated via x-ray diffraction (XRD). Results showed that YAM (monoclinic), YAP (perovskite) and YAG (garnet) were the yttrium aluminates presented in the solid-state reacted samples at a fixed Al2O3:SiC ratio of 1:1. Formation of the yttrium aluminates depended on the temperature. The YAM, YAP and YAG started to form below 1150 °C, at 1300 °C, and at 1450 °C, respectively. Accordingly, two behavior phase diagrams of the Y2O3-Al2O3-SiC ternary system were recognized, one is in the temperature range of 1150-1300 °C and the other is in 1300-1450 °C, respectively. Thereafter, the phase equilibrium was reached in the temperature range of 1450-1700 °C. Effects of SiC on the phase formation processes in the ternary system were discussed.  相似文献   

11.
The formation and decomposition of aluminum titanate (Al2TiO5, tialite) in feedstock powders and coatings of the binary Al2O3-TiO2 system are so far poorly understood. A commercial fused and crushed Al2O3-40%TiO2 powder was selected as the feedstock for the experimental series presented in this paper, as the composition is close to that of Al2TiO5. Part of that powder was heat-treated in air at 1150 and 1500 °C in order to modify the phase composition, while not influencing the particle size distribution and processability. The powders were analyzed by thermal analysis, XRD and FESEM including EDS of metallographically prepared cross sections. Only a maximum content of about 45 wt.% Al2TiO5 was possible to obtain with the heat treatment at 1500 °C due to inhomogeneous distribution of Al and Ti in the original powder. Coatings were prepared by plasma spraying using a TriplexPro-210 (Oerlikon Metco) with Ar-H2 and Ar-He plasma gas mixtures at plasma power levels of 41 and 48 kW. Coatings were studied by XRD, SEM including EDS linescans of metallographically prepared cross sections, and microhardness HV1. With the exception of the powder heat-treated at 1500 °C an Al2TiO5-Ti3O5 (tialite–anosovite) solid solution Al2?xTi1+xO5 instead of Al2TiO5 existed in the initial powder and the coatings.  相似文献   

12.
Metal-insulator-semiconductor (MIS) structures containing Ge nanocrystals embedded in both Al2O3 and ZrO2/Al2O3 are fabricated by an ultra-high vacuum electron-beam evaporation method. Secondary ion mass spectroscopy (SIMS) results indicate that Ge embedded in Al2O3 diffuses towards the surface of the Al2O3 layer after annealing at 800°C in N2 ambient for 30 min. Ge embedded in ZrO2/Al2O3 is stable, thus inducing less leakage current. Capacitance voltage studies indicate that annealing can effectively passivate the negatively charged trapping centers. Memory effect of the Ge nanoclusters is verified by hysteresis in the C-V curves in the Al2O3/Ge+Al2O3/Al2O3 and ZrO2/Ge+Al2O3/Al2O3 samples. This article is based on a presentation in “The 7th Korea-China Workshop On Advanced Materials” organized by the Korea-China Advanced Materials Cooperation Center and the China-Korea Advanced Materials Cooperation Center, held at Ramada Plaza Jeju Hotel, Jeju Island, Korea on August 24–27, 2003.  相似文献   

13.
The present study describes the dielectric properties of RF sputtered Ta2O5 thin films as a function of the buffer layer and annealing condition. The buffer layers were Ti or TiO2. And the thin film was annealed in various conditions. The X-ray pattern results showed that the phase of the RF sputtered Ta2O5 thin films was amorphous and this state was kept stable to RTA (rapid thermal annealing) even at 700°C. Measurements of the electrical and dielectric properties of the reactive sputtered Ta2O5 fabricated in two simple metal insulator semiconductor (MIS) structures, (Cu/Ta2O5/Ti/Si/Cu and Cu/Ta2O5/TiO2/Si/Cu) indicated that the amorphous Ta2O5 grown on Ti possesses a high dielectric constant (30–70) and high leakage current (10−1–10−4 A/cm2), whereas a relatively low dielectric constant (−10) and low leakage current (−10−10 A/cm2) were observed in the amorphous Ta2O5 deposited on the TiO2 buffer layer. In addition, the leakage current mechanisms of the two amorphous Ta2O5 thin films were investigated by plotting the relation of current density (J) vs. applied electric field (E). The Ta2O5/Ti film exhibited three dominant conduction mechanism regimes contributed by the Ohmic emission at low electrical field, by the Schottky emission at intermediate field and by the Poole-Frenkel emission at high field. In the case of Ta2O5/TiO2 film, the two conduction mechanisms, the Ohmic and Schottky emissions, governed the leakage current density behavior. The conduction mechanisms at various electric fields applied were related to the diffusion of Ta, Ti and O, followed by the creation of vacancies, in the rapid thermal treated capacitors.  相似文献   

14.
The fracture toughness of plasma-sprayed Al2O3 coatings in terms of critical strain energy release rate G Ic was investigated using a tapered double cantilever beam (TDCB) approach. This approach makes the fracture toughness be measured only using the critical fracture load disregarding crack length during test. The Al2O3 coatings were deposited under different spray distances and plasma powers to clarify the effect of spray parameters on the G Ic of the coatings. The fracture surfaces were examined using scanning electron microscope. On the basis of an idealized layer microstructure model for thermal sprayed coatings, the theoretical relationship between the cohesive fracture toughness and microstructure is proposed. The correlation between the calculated fracture toughness and observed value is examined. It was found that the fracture toughness of plasma sprayed Al2O3 coatings is not significantly influenced by spray distance up to 110 mm, and further increase in spray distance to 130 mm resulted in large decrease in the fracture toughness of the coatings. The G Ic value predicted based on the proposed model using lamellar interface mean bonding ratio and the effective surface energy of bulk ceramics agreed well with the observed G Ic data. Such agreement evidently shows that the fracture toughness of thermally sprayed ceramic coatings at the direction along coating surface is determined by lamellar interface bonding.  相似文献   

15.
This paper investigates the high-temperature oxidation of cermet coatings composed of two types of nanosized particles (WC and a mixture of WC and Al2O3) incorporated in nickel and produced by co-electrodeposition. For this purpose, high-temperature oxidation tests were conducted at three temperatures (500, 600, and 700 °C) in dry air with 6 time intervals up to 96 h and mass changes at each specific time interval was measured. Statistical techniques were used to calculate the oxidation rate constants (k) and growth-rate time constants (a) for all coatings. The confidence intervals associated with tests were also calculated. The results showed linear to sub-parabolic oxidation rates for coatings composed of only WC particles and sub-liner to liner oxidation rates for coating with both WC and Al2O3 particles. The reduction in oxidation rates for coatings with both WC and Al2O3 particles were correlated to the addition of Al2O3 particles in the matrix.  相似文献   

16.
Graphite is used in high-temperature gas-cooled reactors because of its outstanding irradiation performance and corrosion resistance. To restrict its high-temperature (>873 K) oxidation, atmospheric-plasma-sprayed SiC-ZrB2-Al2O3-carbon nanotube (CNT) dual-layer coating was deposited on graphite substrate in this work. The effect of each layer was isolated by processing each component of the coating via spark plasma sintering followed by isothermal kinetic studies. Based on isothermal analysis and the presence of high residual thermal stress in the oxide scale, degradation appeared to be more severe in composites reinforced with CNTs. To avoid the complexity of analysis of composites, the high-temperature activation energy for oxidation was calculated for the single-phase materials only, yielding values of 11.8, 20.5, 43.5, and 4.5 kJ/mol for graphite, SiC, ZrB2, and CNT, respectively, with increased thermal stability for ZrB2 and SiC. These results were then used to evaluate the oxidation rate for the composites analytically. This study has broad implications for wider use of dual-layer (SiC-ZrB2/Al2O3) coatings for protecting graphite crucibles even at temperatures above 1073 K.  相似文献   

17.
Al + SiC, Al + Al2O3 composites as well as pure Al, SiC, and Al2O3 coatings were prepared on Si substrates by the cold gas dynamic spray process (CGDS or cold spray). The powder composition of metal (Al) and ceramic (SiC, Al2O3) was varied into 1:1 and 10:1 wt.%, respectively. The propellant gas was air heated up to 330 °C and the gas pressure was fixed at 0.7 MPa. SiC and Al2O3 have been successfully sprayed producing coatings with more than 50 μm in thickness with the incorporation of Al as a binder. Also, hard ceramic particles showed peening effects on the coating surfaces. In the case of pure Al metal coating, there was no crater formation on hard Si substrates. However, when Al mixed with SiC and Al2O3, craters were observed and their quantities and sizes depended on the composition, aggregation and size of raw materials.  相似文献   

18.
Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 was prepared by wet chemical route. The phase, surface morphology, and electrochemical properties of the prepared powders were characterized by X-ray diffraction, scanning electron micrograph, and galvanostatic charge-discharge experiments. Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 has similar X-ray diffraction patterns as LiMn2O4. The corner and border of Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 particles are not as clear as the uncoated one. The two powders show similar values of lithium-ion diffusion coefficient. When cycled at room temperature and 55°C for 40 times at the charge-discharge rate of 0.2C, Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 shows the capacity retentions of 98.2% and 93.9%, respectively, which are considerably higher than the values of 85.4% and 79.1% for the uncoated one. Both the capacity retention differences between Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 and LiMn2O4 cycling at room temperature and 55°C become larger with the increase of charge-discharge rate. When the charge-discharge rate reaches 2C, the capacity retention of LATP-coated LiMn2O4 becomes 8.4% higher than the uncoated LiMn2O4 for room temperature cycling, and it becomes 11.1% higher than the latter when cycled at 55°C.  相似文献   

19.
Dispersion-strengthened Cu-Al2O3 materials have been studied over recent years to find an optimum processing route to obtain a high strength, thermal-stable copper alloy designed for modern applications in electrical engineering. The study analyses the influence of 1 vol.% of alumina content on strengthening the copper matrix. Microstructure of the Cu-Al2O3 composite was studied by x-ray diffraction as well as scanning and transmission electron microscopy. The composite shows a homogeneous, thermal-stable nanostructure up to 900 °C due to dispersed alumina nanoparticles. The particles effectively strengthen crystallite/grain boundaries in processes of powder consolidation and annealing of the compact. In contrast to monolithic Cu, the Cu-1 vol.% Al2O3 exhibits more than double strength and hardness. The nanocrystalline matrix and the low amount of alumina particles result in a yield strength of 288 MPa and a ductility of 15% which is a good combination for practical utilization of the material.  相似文献   

20.
In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of 10 g/Land 14 g/LAl2O3 led to the lowest corrosion rate (i corr = 1.3 µA/cm2), the most positive E corr and maximum microhardness (496 VH). Furthermore, Ni-P-SiO2-Al2O3 nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号