共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanostructured star‐shaped polythiophene with tannic acid core: Synthesis,characterization, and its physicochemical properties 下载免费PDF全文
For the first time, synthesis and characterization of a nanostructured star‐shaped polythiophene (PTh) with tannic acid core by both chemical and electrochemical oxidation polymerization methods through a “core‐first” method is reported. The chemical structures of all samples as representatives were characterized by means of Fourier transform infrared (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopies. The electroactivity behaviors of the synthesized samples were verified under cyclic voltammetric conditions, and their conductivities were determined using the four‐probe technique. The synthesized star‐shaped PTh showed higher electrical conductivity and electroactivity than those of the PTh in both chemical and electrochemical polymerized samples, due to its large surface area, spherical, and three‐dimensional structure. Moreover, the thermal behaviors, optical properties, and morphologies of the synthesized samples were investigated by means of thermogravimetric analysis (TGA), ultraviolet–visible (UV–Vis) spectroscopy, and field emission scanning electron microscopy (FE‐SEM), respectively. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43513. 相似文献
2.
Conducting polyaniline (PAni)/activated carbon (AC) nanocomposites were synthesized by the in situ chemical polymerization method. The resultant shell–core PAni–AC nanocomposites were characterized by elemental analysis, Fourier transform infrared, scanning electron microscopy, thermal gravimetric analysis, X‐ray diffraction, and transmission electron microscopy. We did not observe any significant chemical interaction between the PAni and AC, only core–shell coupling between the AC and the tightly coated polymer chain was revealed. Measurement of the physical properties showed that the incorporation of conducting PAni on to AC particles during chemical synthesis increased electrical conductivity and thermal stability by several orders of magnitude to that of the pristine PAni powders. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1973–1977, 2007 相似文献
3.
Polyphenylene (PP) with NH2 side groups, namely, PFluNH 2 , was synthesized by the Pd‐catalyzed reaction of 2,5‐dibromoaniline with 9,9‐dihexylfluorene‐2,7‐diboronic acid bis(1,3‐propanediol) ester. The reaction of PFluNH 2 with 1‐hexyl‐1′‐(2,4‐dinitrophenyl)‐4,4′‐bipyridinium diiodide ( SaltBPy(I?) ) eliminated 2,4‐dinitroaniline to yield PPs with viologen (1,1′‐disubstituted 4,4′‐bipyridinium dications), PFluBPy(I?) . The reaction of PFluBPy(I?) with Li+TCNQ ? resulted in anion exchange between Cl ? and TCNQ ? , and yielded PFluBPy(TCNQ?) . The reaction of PFluBPy(TCNQ?) with the neutral TCNQ0 resulted in an interaction between TCNQ ? and TCNQ0, and yielded PFluBPy(TCNQ?‐TCNQ0) . Cyclic voltammetry measurements suggested that an electrochemical reduction of the viologen moiety and oxidation of the polymer backbone within PFluBPy(TCNQ?) and PFluBPy(TCNQ?‐TCNQ0) . Furthermore, this reaction was accompanied by electrochromism. The electric conductivities (σ) of the pellets molded from PFluBPy(TCNQ?) to PFluBPy(TCNQ?‐TCNQ0) were 2.7 × 10 ? 4 and 4.2 × 10 ? 4 Scm ? 1, respectively; these σ values were higher than that observed for PFluNH 2 (σ < 10 ? 8 Scm ? 1) due to the self‐doping in the polymers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
4.
Synthesis and spectroelectrochemical investigation of low‐bandgap polymer: Integrated quinoxaline and benzimidazole in one electron acceptor unit 下载免费PDF全文
Two novel π‐conjugated monomers, 6‐(4‐octyloxyphenyl)‐4,8‐bis(thiophene‐2‐yl)‐3H‐[d] imidazole[1,2,5] benzothiadiazole (M3) and 4‐(4‐octyloxyphenyl)‐2,6‐bis(thiophene‐2‐yl)‐3H‐[d] imidazole‐acenaphtho[1,2‐b]quinoxaline (M4), were synthesized. The monomer M4 contains a thiophene electron‐donating unit and electron withdrawing unit in which quinoxaline and benzimidazole integrated in one benzene ring. Electrochemical polymerization of the monomers was carried out in acetonitrile/dichloromethane solvent mixture containing tetra‐n‐butylammonium hexafluorophosphate and electrochromic properties of polymers (P3 and P4) are described in this article. Furthermore, the effects of structural difference on electrochemical redox behavior and spectroelectrochemical properties of the two resulting polymers were examined. The results showed that an anodic wave at +0.48 V versus Ag wire pseudo‐reference electrode corresponding to the monomer M4 oxidation was observed, while one anodic wave at +0.70 V was observed in oxidation of M3 as it contains stronger electron withdrawing thiadiazole structure. The UV‐vis‐Near‐infrared (Near‐infrared spectroscopy) (NIR) spectra analysis revealed that the two polymers have one absorbance band centered at 603 nm. The band gaps, defined as the onset of the absorption band at 603 nm of these polymers, were determined as 1.60 eV for P3 and as 1.55 eV for P4. The electrochromic results showed that P3 revealed about 20% optical contrast at 980 nm and the P4 has 30% optical contrast at 806 nm with low response time (1 s for each polymer). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40861. 相似文献
5.
A polyaniline (PANI)‐Cu nanocomposite‐modified electrode was fabricated by the electrochemical polymerization of aniline and the electrodeposition of copper under constant potentials on a glassy carbon electrode (GCE), respectively. Scanning electron microscope result shows that the PANI‐Cu composite on the surface of the GCE displays the nanofibers having an average diameter of about 80 nm with lengths varying from 1.1 to 1.2 μm. The electrode exhibits enhanced electrocatalytic behavior to the reduction of nitrite compared to the PANI‐modified GCE. The effects of applied potential, pH value of the detection solution, electropolymerization charge, temperature, and nitrite concentration on the current response of the composite‐modified GCE were investigated and discussed. Under optimal conditions, the PANI‐Cu composite‐modified GCE can be used to determine nitrite concentration in a wide linear range (n = 18) of 0.049 and 70.0 μM and a limit of detection of 0.025 μM. The sensitivity of the electrode was 0.312 μA μM?1 cm?2. The PANI‐Cu composite‐modified GCE had the good storage stability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
6.
Specroelectrochemical,switching kinetics,and chronoamperometric studies of dibenzyl derivative of poly(3,4‐propylenedioxythiophene) thin‐film‐based electrochromic device 下载免费PDF全文
Raja Lakshmanan Palani Prabhu Raja Narayanapura Channegowda Shivaprakash Sindhu Sukumaran Nair 《应用聚合物科学杂志》2014,131(17)
The dibenzyl derivative of poly(3,4‐propylenedioxythiophene) (PProDOT‐Bz2) thin film is deposited onto ITO‐coated glass substrate by electropolymerization technique. The electropolymerization of ProDOT‐Bz2 is carried out by a three‐electrode electrochemical cell. The cyclic voltammogram shows the redox properties of electrochemically prepared films deposited at different scan rates. The thin films prepared were characterized for its morphological properties to study the homogeniety. Classic six‐layer structure of PProDOT‐Bz2 electrochromic device using this material was fabricated and reported for the first and its characterizations such as spectroelectrochemical, switching kinetics, and chronoamperometric studies are performed. The color contrast of the thin film and the device achieved are 64 and 40%, respectively, at λmax (628 nm). The switching time is recorded and the observed values are 5 s from the coloring state to the bleaching state and vice versa. The chronoamperometry shows that the device performed up to 400 cycles, and it is capable of working up to 35 cycles without any degradation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40717. 相似文献
7.
Synthesis,chemical, and thermoelectric properties of n‐type π‐conjugated polymer composed of 1,2,4‐triazole and pyridine rings and its metal complexes 下载免费PDF全文
A soluble n‐type π‐conjugated polymer ( polymer 1 ) composed of a 1,2,4‐triazole ring substituted by a 4‐n‐octylphenyl subunit at the 4‐position of the 1,2,4‐triazole ring and pyridine‐2,5‐diyl rings was synthesized by Ni(cod)2 (cod = 1,5‐cyclooctadiene) promoted dehalogenation polycondensation of 3,5‐bis(2‐bromopyridyl)‐4‐n‐octylphenyl‐1,2,4‐triazole ( monomer 1 ). A polymer complex ( polymer‐BiCl3 ) was synthesized by the reaction of polymer 1 with BiCl3. The UV–vis spectrum of polymer 1 exhibited an absorption maximum (λmax value) at a longer wavelength than that exhibited by monomer 1 revealing that its π‐conjugation system was expanded along the polymer chain. Polymer 1 was electrochemically active in film, and the electrochemical reaction was accompanied with electrochromism. Thermoelectoric properties of polymer 1 and polymer‐BiCl3 were investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39928. 相似文献
8.
The influence of inorganic and organic supporting electrolytes on the electrochemical, optical, and conducting properties of poly(o‐anisidine), poly(o‐toluidine), and poly(o‐anisidine‐co‐o‐toluidine) thin films was investigated. Homopolymer and copolymer thin films were synthesized electrochemically, under cyclic voltammetry conditions, in aqueous solutions of inorganic acids (H2SO4, HCl, HNO3, H3PO4, and HClO4) and organic acids (benzoic acid, cinnamic acid, oxalic acid, malonic acid, succinic acid, and adipic acid) at room temperature. The films were characterized by cyclic voltammetry, ultraviolet–visible spectroscopy, and conductivity measurements with a four‐probe technique. The ultraviolet–visible spectra were obtained ex situ in dimethyl sulfoxide. The optical absorption spectra indicated that the formation of the conducting emeraldine salt (ES) phase took place in all the inorganic electrolytes used, whereas in organic acid supporting electrolytes, ES formed only with oxalic acid. Moreover, the current density and conductivity of the thin films was greatly affected by the nature and size of the anion present in the electrolyte. For the copolymer, the conductivity lay between the conductivity of the homopolymers, regardless of the supporting electrolyte used. The formation of the copolymer was also confirmed with differential scanning colorimetry. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2634–2642, 2003 相似文献
9.
Ya Zhang Aixue Dong Xuerong Fan Qiang Wang Ying Zhang Yuanyuan Yu Artur Cavaco‐Paulo 《应用聚合物科学杂志》2016,133(5)
Enzymatic polymerization of aniline was first performed in lignosulfonate (LGS) template system. High‐redox‐potential catalyst laccase, isolated from Aspergillus, was used as a biocatalyst in the synthesis of conducting polyaniline/lignosulfonate (PANI‐ES‐LGS) complex using atmospheric oxygen as the oxidizing agent. The linear templates (LGS), also serving as the dopants, could facilitate the directional alignment of the monomer and improve the solubility of the conducting polymer. The process of the polymerization was monitored using UV‐Vis spectroscopy, by which the conditions for laccase‐catalyzed synthesis of PANI‐ES‐LGS complex were also optimized. The structure characterizations and solubility of the complex were carried out using corresponding characterization techniques respectively. The PANI‐ES‐LGS suspensions obtained was used as coating for cotton with a conventional padder to explore the applications of the complex. The variable optoelectronic properties of the coated cotton were confirmed by cyclic voltammetry and color strength test. The molecular weight changes of LGS treated by laccase were also studied to discuss the mechanism of laccase catalyzed aniline polymerization in LGS template system. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42941. 相似文献
10.
A series of five new conjugated polythiophene (PT) derivatives containing piperidinyl groups as a side chain were synthesized by ferric trichloride oxidization. All of the polymers were soluble in common organic solvents, and their high regioregularity were confirmed by 1H‐NMR. The weight‐average molar masses ranged from 5931 to 22,955 g/mol with a low polydispersity index ranging from 1.18 to 1.79. The fluorescence emission maximum of poly[3‐(N‐methyl propionate–4′‐piperidine)methylene–thiophene] in the films was 725 nm in the yellow–red region, higher than that of the other PT derivatives. All five polymers exhibited reversible p‐doping/dedoping (oxidation/reneutralization) processes; this indicated that these polymers could be applied in electrical equipment in the doping state. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
11.
The electropolymerization of several poly(3‐methylthiophene) films in the same used solution and its consequence in their properties 下载免费PDF全文
Alessandra Alves Correa Roger Gonçalves Rodrigo Pereira Ernesto Chaves Pereira 《应用聚合物科学杂志》2017,134(2)
The effect of the electropolymerization of seven poly(3‐methylthiophene) (P3MT) films in the same used monomer solution have been investigated. Cyclic voltammetry, UV‐visible, scanning electron microscopy, and electrochemical impedance measurements were carried out to understand the effect of the solution reusing on the polymer electrochemical properties. The obtained results show that, as the solution is reused, the polymerization rate increase and the charge in of the cyclic voltammetry decrease. Besides, there are important changes in the sample's morphologies, with the increase of the synthesis number, the amount of fibers increase and this leads to lower the conductivity of the polymer film. In agreement to this, the impedance data analysis shown important changes in the interfacial electronic parameters, i.e., changer transfer resistance and double‐layer capacitance, used to describe the films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44368. 相似文献
12.
Synthesis,characterization, and properties of acrylate‐modified tung‐oil waterborne insulation varnish 下载免费PDF全文
Qing Ge Hualin Wang Yi She Suwei Jiang Mengye Cao Linfeng Zhai Shaotong Jiang 《应用聚合物科学杂志》2015,132(10)
An acrylate‐modified tung‐oil waterborne insulation varnish was synthesized from tung oil, maleic anhydride, and acrylates via a Diels–Alder reaction and free‐radical polymerization, and the varnish could be solidified at a relatively low temperature with blocked hexamethylene diisocyanate as a curing agent. The resulting films were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The insulation properties (electrical insulation strength, volume resistivity, and surface resistivity) of the varnish films were tested, and the resistances of films to salted water were evaluated. With an increase in the maleic anhydride content, the thermal stability of the film was improved, whereas the electrical insulation strength, volume resistivity, and surface resistivity decreased. The electrical insulation strength of the film after it was immersed in the NaCl solution was lower than that in dry state, and it decreased as the immersed time was prolonged. In particular, the electrical insulation strength loss of the film increased significantly at maleic anhydride contents beyond 25 wt %. Furthermore, the hardness of the film increased with increasing methyl methacrylate/N‐butyl acrylate ratio, whereas the flexibility and adhesion of film decreased to a certain degree at the same time. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41608. 相似文献
13.
Proton‐conducting gel electrolytes based on poly(methyl methacrylate) (PMMA), poly(vinylidene fluoride) (PVdF), and mixtures of PMMA with PVdF or poly(vinyl chloride) doped by acid solutions in aprotic solvents were synthesized and are discussed in this article. The gel conductivity as a function of the concentrations of acid and polymer and the polymeric matrix composition has been analyzed. Extreme dependence of the conductivity on acid and polymer concentrations was found. It was revealed that within the acid concentration range studied, the gel conductivity was higher than the conductivity of the corresponding liquid electrolytes used for the synthesis. The increase in the electrical conductivity with the growth of the systems viscosity is discussed as an indication of a certain involvement of the polymer matrix in the increase of the charge carrier mobility within the frame of a Grotthuss mechanism. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40674. 相似文献
14.
Investigations of the electrical conduction mechanisms of polyaniline‐DBSA/poly(acrylonitrile‐butadiene styrene) blends 下载免费PDF全文
The electrical properties of Al/PANI‐DBSA/ABS/Au blend with PANI (5%) w/w have been investigated by using of current‐voltage (I‐V) measurements, in a temperature range of 100–313 K. The analysis of I‐V characteristics in the forward direction was based on thermionic emission mechanism for applied electrical field till ~3 × 102 V/cm. The thickness dependence of the current‐voltage relationship, clearly demonstrates that the electrical current for larger fields is space charge limited current (SCLC). Temperature dependences of the ideality factor, barrier height, and series resistance have been calculated. The mobility of carriers which is temperature dependent was calculated using the trap free SCLC as 1.53 × 10?4 cm2 V?1 s?1 at room temperature. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40688. 相似文献
15.
Multifunctional polyaniline–tin oxide (PANI–SnO2) nanocomposite: Synthesis,electrochemical, and field emission investigations 下载免费PDF全文
Sandip S. Patil Kashmira V. Harpale Shankar P. Koiry Kashinath R. Patil Dinesh K. Aswal Mahendra A. More 《应用聚合物科学杂志》2015,132(5)
Synthesis of PANI–SnO2 nanocomposite has been performed using a simple two step chemical oxidative polymerization route. The structural, morphological and chemical properties of the as‐synthesized PANI–SnO2 nanocomposite have been revealed by various characterization techniques such as SEM, TEM, XRD, FTIR, and XPS. Interestingly the as‐synthesized PANI–SnO2 nanocomposite exhibits supercapacitance value of 721 F g?1 with energy density 64 Wh kg?1, which is noticed to be higher than that of pristine SnO2 and PANI nanostructures. Furthermore, the galvanostatic charge–discharge characteristics revealed pseudocapacitive nature of the PANI–SnO2 nanocomposite. The estimated values of charge transfer resistance and series resistance estimated from the Nyquist plot are found to be lower. Along with the supercapacitive nature, PANI–SnO2 nanocomposite showed promising field emission behavior. The threshold field, required to draw emission current density of 1 μA/cm2, is observed to be 0.90 V/μm and emission current density of 1.2 mA/cm2 has been drawn at applied field of ~2.6 V/μm. The emission current stability investigated at preset values of 0.02 and 0.1 mA/cm2 is observed to be fairly stable over duration of more than 3 h. The enhanced supercapacitance values, as well as, the promising field emission characteristics are attributed to the synergic effect of SnO2 nanoparticles and PANI nanotubes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41401. 相似文献
16.
Paula C. Rodrigues Bruno D. Fontes Bruno B. M. Torres Washington S. Sousa Gregório C. Faria Debora T. Balogh Roberto M. Faria Leni Akcelrud 《应用聚合物科学杂志》2015,132(38)
Synthesis of a polyfluorene/poly(p‐phenylene vinylene) derivative, the Poly [(9,9′‐di‐hexylfluorenediylvinylene‐alt‐1,4‐phenylenevinylene)‐co‐((9,9′‐(3‐t‐butylpropanoate) fluorene‐1,4‐phenylene)] (LaPPS 42) was performed following Wittig and Suzuki routes. Polyfluorenes and derivatives have been used in electroluminescent devices, and the synthesis described here has the advantage in pave the way to get distinct structures having different emission spectra. An extensive study of its electrochemical, thermomechanical, optical, and structural properties was carried out, as well as its application in electroluminescent devices. Polymer light‐emitting diodes (PLEDs) and polymer light‐emitting electrochemical cells (PLECs) were built using LaPPS 42 as active layer, and their electric and optical characterizations confirm they have a potential as active element in electroluminescent devices. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42579. 相似文献
17.
Synthesis,characterization, electropolymerization,and possible utilities of a new ruthenium–thiophene complex 下载免费PDF全文
Beatriz González M. Angélica del Valle Fernando R. Díaz Christian Espinosa‐Bustos Andrés M. R. Ramírez Loreto A. Hernández 《应用聚合物科学杂志》2016,133(25)
[RuCl2(p‐cymene)]2 was reacted with silver triflate and thiophene to give the sandwich complex [Ru(η5‐C4H4S)(η6‐p‐cymene)](PF6)2, which was characterized with NMR spectroscopy (1H‐NMR, 13C‐NMR, and 31P‐NMR), Fourier transform infrared spectroscopy, elemental analysis, and cyclic voltammetry. The behavior of this new complex in dimethyl sulfoxide with regard to the amount of absorbed water was investigated by both NMR and cyclic voltammetry; the formation of other species that affected electropolymerization was demonstrated. However, under optimal working conditions (in an anhydrous medium), the complex was successfully immobilized on a platinum electrode via an electro‐oxidation pathway through the thiophene ligand. This generated a highly stable, electroactive polymer film. Its response to the doping–undoping (charge–discharge) and redox processes, added to its high stability, promises important applications for this novel material. Moreover, this opens up the possibility of testing other compounds, such as [Ru(η5‐thiophene)(η6‐arene)], that were previously synthesized and reported for their electropolymerization and use as sensors according to their redox properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43559. 相似文献
18.
To study the effect of a surfactant on the properties of polyaniline (PANI)/metal oxide composites, PANI/lead titanate (PbTiO3) composites were synthesized with different weight percentages (10, 20, 30, 40, and 50 wt %) of PbTiO3 in both the absence and presence of dodecylbenzenesulfonic acid (DBSA) by the polymerization of aniline with ammonium persulfate as an initiator. The structural characteristics and stability, surface characteristics, and electric properties of PANI/PbTiO3 and PANI–DBSA/PbTiO3 were studied and compared. The interfacial interactions and thermal stability of these composites were characterized with X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermogravimetry techniques. The results indicate significant changes in the physicochemical properties of the composites with the incorporation of DBSA. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
19.
Suttisak Srisuwan Yujie Ding Donna Mamangun Supakanok Thongyai Piyasan Praserthdam Gregory A. Sotzing 《应用聚合物科学杂志》2013,128(6):3840-3845
Poly(3,4‐ethylenedioxythiophene) (PEDOT) was polymerized using sulfonated poly(amic acid)s templates (SPAA1 and SPAA2) by batch operation. The new method was invented to enhance conductivities (ca. 100 ‐ to 2000‐fold) and with less reaction time from previous work (7 days vs. 3 days). Moreover, to increase the conductivity, many dopants were introduced as secondary doping compared with DMF, D ‐sorbitol, and surfynol that were previously used. After annealing at 180°C for 10 min, PEDOT‐SPAA1 and PEDOT‐SPAA2 doped with benzo‐1,4‐dioxan and quinoxaline showed the increase in conductivity by higher percentage than any other systems, especially doped with D ‐sorbitol and surfynol. These showed the promising tendency to develop the annealing activated superior conductivity materials after further modifying the conducting film forming processes. However, PEDOT‐SPAAs doped with benzo‐1,4‐dioxan, imidazole and quinoxaline via annealed at 180°C for 10 min were found to be more conductive than doped with DMF, but still lower conductive than doped with D ‐sorbitol and surfynol. In terms of particle size, the stable aqueous dispersions of conducting polymers prepared were comparable to polystyrene sulfonate template. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
20.
Kamal I. Aly 《应用聚合物科学杂志》2012,123(6):3390-3401
A new interesting class of conducting polymer and copolymers based on 4‐teriary butyl‐cyclohexanone in the main chain has been synthesized by solution polycodensation of terephthalaldehyde with 4‐teriary butyl‐cyclohexanone and/or cycloalkanone derivatives. The model compound I was synthesized from the 4‐teriary butyl‐cyclohexanone with benzaldehyde, and its structure was confirmed by elemental and spectral analyses. The resulting polymer and copolymers were characterized by elemental and spectral analyses including Fourier transform infrared spectrometer (FT‐IR) and nuclear magnetic resonance (1H‐NMR), beside solubility and viscometry measurements. The thermal properties of those polymer and copolymers were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC) measurements and correlated to their structural units. X‐ray analysis showed that it has some degree of crystallinity in the region 2θ = 5–60°. The UV–visible spectra of some selected polymers were measured in dimethyl sulfoxide (DMSO) solution and showed absorption bands in the range 253–398 nm, due to n–π* and π–π* transition. The morphological properties of selected examples were tested by scanning electron microscope (SEM). Moreover, the electrical conductivities and the doping with iodine were tested. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献