首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thin Pt layer on fluorine‐doped tin oxide (FTO) glass is commonly used as the counter electrode (CE) for dye‐sensitized solar cells (DSCs). We have investigated thin layers on FTO glass made from spherical polypyrrole (PPy)–poly(styrene sulfonate) (PSS) nanocolloidal particles with and without treatment of CuBr2 and used them as CEs. The colloidal polymer composite (PPy:PSS) was spin‐coated at 4000 rpm, and PPy:PSS multilayer (one, three, five) films were employed as the CEs. Aqueous solutions of CuBr2 (0.5 M and 1 M) were coated onto the multilayer CEs, which increased the efficiency of DSCs. When compared with the untreated PPy:PSS counter electrodes, the CuBr2‐treated PPy:PSS films showed lower charge‐transfer resistance, higher surface roughness, and improved catalytic performance for the reduction of . The enhanced catalytic performance is attributed to the interaction of the superior electrocatalytic activity of PPy:PSS and CuBr2 salt. Under standard AM 1.5 sunlight illumination, the counter electrodes based on a single‐layer PPy:PSS composite with 0.5 M and 1 M CuBr2 salt treatment demonstrated power conversion efficiencies (PCE) of 5.8% and 5.6%, respectively. These values are significantly higher than that of the untreated PPy:PSS CE and are comparable with that of a Pt CE. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43772.  相似文献   

2.
Nanocolloidal polypyrrole (PPy):poly(styrene sulfonate) (PSS) particles were synthesized by chemical oxidative polymerization using 15 wt% of PSS. The highly processable polymer composite (PPy:PSS) was spin‐coated at 4000 rpm on fluorine‐doped tin oxide glass and subsequently employed as a counter electrode (CE) for dye‐sensitized solar cells (DSCs). PPy:PSS multilayer (one, three, five) CEs were treated with CuBr2 salt, which enhances the efficiency of the DSCs. Optical studies reveal that a bulkier counterion hinders interchain interactions of PPy which on salt treatment shows a moderate redshift in absorption maxima. Salt‐treated PPy:PSS films exhibit lower charge transfer resistance, higher surface roughness and better catalytic performance for the reduction of I3?, when compared with untreated films. The improved catalytic performance of salt‐treated PPy:PSS multilayer films is attributed to charge screening and conformational change of PPy, along with the removal of excess PSS. Under standard AM 1.5 sunlight illumination, salt treatment is shown to boost the efficiency of multilayer PPy:PSS composite film‐based DSCs, leading to enhanced power conversion efficiency of 6.18, 6.33 and 6.37% for one, three and five layers, respectively. These values are significantly higher (ca 50%) than those for corresponding devices without CuBr2 salt treatment (3.48, 2.90 and 2.01%, respectively). © 2016 Society of Chemical Industry  相似文献   

3.
Poly(o‐anisidine) (POA) counter electrodes (CEs) were fabricated by potentiodynamic deposition and incorporated into platinum (Pt)‐free dye‐sensitized solar cells (DSSCs). A different sweep number had great impact on the morphology and electrocatalytic activity of the POA films. The POA film fabricated by 25 sweep cycles was observed to have a highly porous morphology, and this resulted in a lower charge‐transfer resistance of 57 cm2 in comparison with the Pt CE. The DSSC assembled with the POA CE showed a higher photovoltaic conversion efficiency of 1.67% compared to 1.2% for the DSSC with the Pt CE under full sunlight illumination. Therefore, the high active surface area of the 25‐sweep‐segmented POA film could be considered a promising alternative CE for use in DSSCs because of its high electrocatalytic performance and electrochemical stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42041.  相似文献   

4.
We demonstrate here the layer‐by‐layer (LbL) self‐assembly of conducting [poly(styrene sulfonate)‐poly(vinyl alcohol)/polypyrrole]n [(PSS‐PVA/PPy)n] multilayer film with interesting electrical and photoelectric features. Increments in sheet conductivity and photoelectric response with increasing bilayer number are pioneerly recorded. The fantastic phenomenon is determined as the accumulative electrons tunneled across insulating PSS from bottom to top PPy chains. The resulting multilayer films give a linear growth in bulk conductivity and maximum photocurrent density. Careful examination of data and characterizations indicates that the fantastic effects in electrical conduction and photocurrent are accumulative electrons tunneled across PSS from bottom to top PPy. POLYM. ENG. SCI., 55:107–112, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
A novel hierarchical Pt- and FTO-free counter electrode (CE) for the dye-sensitized solar cell (DSSC) was prepared by spin coating the mixture of TiO2 nanoparticles and poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) solution onto the glass substrate. Compared with traditional Pt/FTO CE, the cost of the new CE is dramatically reduced by the application of bilayer TiO2-PEDOT:PSS/PEDOT:PSS film and the glass substrate. The sheet resistance of this composite film is 35 Ω sq−1 and is low enough to be used as an electrode. The surface morphologies of TiO2-PEDOT:PSS layer and modified PEDOT:PSS layer were characterized by scanning electron microscope, which shows that the former had larger surface areas than the latter. Electrochemical impedance spectra and Tafel polarization curves prove that the catalytic activity of TiO2-PEDOT:PSS/PEDOT:PSS/glass CE is higher than that of PEDOT:PSS/FTO CE and is similar to Pt/FTO CE''s. This new fabricated device with TiO2-PEDOT:PSS/PEDOT:PSS/glass CE achieves a high power conversion efficiency (PCE) of 4.67%, reaching 91.39% of DSSC with Pt/FTO CE (5.11%).  相似文献   

6.
The layer‐by‐layer self‐assembled NDR‐PSS (nitro‐containing diazoresin‐polysodium p‐styrenesulfonate) films were fabricated. The crosslinking structure formed from the conversion of ionic bond to covalent bond after UV irradiation, confirmed by small angle X‐ray diffraction. The roughness and microtribological properties of NDR‐PSS films were investigated by atomic force microscopy/friction force microscopy. The ordered multilayer films after photoreaction are better in microtribological performance than that of the monolayer film. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 631–638, 2000  相似文献   

7.
A high cycling stability material and an additive manufacturing method are reported for the fabrication of solid electrochromic devices. The poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate)/multi‐walled carbon nanotube (PEDOT:PSS/MWCNT) nanocomposites were synthesized via in situ polymerization. A carboxymethyl cellulose gel was used as the ink vehicle for screen printing. The electrochromic (EC) performance of films patterned by screen printing was also examined. The results of characterization indicate that strong interfacial interactions occurred between PEDOT:PSS and the MWCNTs and the MWCNTs formed a network in these conducting polymers film, so the composite was more conductive than pure PEDOT:PSS. Devices containing PEDOT:PSS/MWCNTs were more stable after 1000 cycles, exhibited higher rate of ion exchange and faster increases in current. The composite containing 0.3 wt % MWCNTs also had a 23% higher color contrast (ΔE*) than pure PEDOT:PSS at 2.5 V applied voltages. The EC inks with well printability not only can be used to print large area films, but also can print fine lines and pixel‐type dots in displays. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45943.  相似文献   

8.
The layer‐by‐layer (LbL) self assembly deposition technique was used to prepare multilayer thin films of anionic polyaniline‐blend‐poly(sodium 4‐styrenesulfonate) (PANI‐PSS) and cationic poly(diallydimethylammonium chloride) (PDADMAC). Anionic polyaniline was prepared by the interfacial polymerization of aniline monomer in the presence of PSS which acted as template to provide water solubility. The PSS to PANI concentration ratios used in the synthesis step was found to have a major effect on the final PANI‐PSS synthesis, its self assembly and the electrical properties of the prepared films. The optical and electrical properties of the films were measured by ultraviolet‐visible spectroscopy (UV‐Vis) and a 4‐point probe setup, respectively while the thickness of the films was measured by atomic force microscopy (AFM). Results showed that the optimum condition for the film growth and optimal conductivity were obtained with different synthesis conditions. These results suggest that the PSS concentration used for interfacial synthesis of PANI must be finely tuned depending on the type of application aimed by the user. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Ping Ni 《Carbon》2010,48(7):2100-13
The assembling behavior between graphite oxide (GO) nanosheets and polydiallyldimethylammonium (PDDA) polycations was investigated by both layer-by-layer method and flocculated technology, and the capacitive performance of the assembled hybrid composite was also studied. Sequential alternate adsorption of GO nanosheets and PDDA polycations yielded multilayer films while their simple mixing produced lamellar materials. X-ray diffraction (XRD) indicated that the combination of the multilayer film produced XRD Bragg peak having basal spacing of 1.09 nm, which was compatible with the sum of one layer GO nanosheets and one layer of PDDA polycations. A different assembling process took place for the flocculated material; its XRD Bragg peaks had multilayer spacing of 1.49 nm, which was compatible with the sum of one layer GO nanosheets and two layers of PDDA polycations. UV-visible absorption spectra exhibited progressive enhancement of optical density due to GO, providing strong evidence for regular growth of multilayer films. Scanning electron microscopy images of the multilayer film and flocculated material displayed lamellar features. The flocculated material showed good capacitive behavior and cycling stability, and the specific capacitance value was 176 F g−1.  相似文献   

10.
The carbon nanotubes (CNTs) have been loaded on the melamine foam (MF) to form the composite (CNTs/MF) by dip‐dry process, then polypyrrole (PPy) is coated on CNTs/MF (PPy/CNTs/MF) through chemical oxidation polymerization by using FeCl3·6H2O adsorbed on CNTs/MF as oxidant to polymerize the pyrrole vapor. Finally, CNTs are coated on the surface of PPy/CNTs/MF to increase the conductivity of the composite (CNTs/PPy/CNTs/MF) by dip‐dry process again. The composites have been characterized by X‐ray diffraction spectroscopy, scanning electron microscopy and electrochemical method. The results show that the structure of the composites has obvious influence on their capacitive properties. According to the galvanostatic charge/discharge test, the specific capacitance of CNTs/PPy/CNTs/MF is about 184 F g?1 based on the total mass of the composite and 262 F g?1 based on the mass of PPy (70.2 wt % in the composite) at the current density of 0.4 A g?1, which is higher than that of PPy/CNTs/MF (120 F g?1 based on the total mass of the composite and 167 F g?1 based on the mass of the PPy). Furthermore, the capacitor assembled by CNTs/PPy/CNTs/MF shows excellent cyclic stability. The capacitance of the cell assembled by CNTs/PPy/CNTs/MF retains 96.3% over 450 scan cycles at scan rate of 20 mV s?1, which is larger than that assembled by CNTs/PPy/MF (72.5%). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39779.  相似文献   

11.
In this study, we made a new attempt to examine the relationship between the conductivity and the concentration of a polyelectrolyte solution and to prepare multilayer films with cationic lignin and polyanions through layer‐by‐layer self‐assembly. The nitrogen content of trimethyl lignin quaternary amine salt (TLQA) was 3.56%, and the carboxyl content of carboxymethylated poly (vinyl alcohol) (CMPVA) was 0.62 mmol/g. Attenuated total reflectance spectra confirmed that TLQA and CMPVA were fabricated and assembled successfully. The concentration of TLQA had a polynomial correlation with the conductivity [correlation coefficient (R2) = 0.9953], and the concentration of CMPVA was linear with the conductivity (R2 = 0.9819). The electrostatic sequential adsorption process was monitored with a UV–visible spectrophotometer, and the morphology of the (TLQA/CMPVA)n (where n is the number of double membranes) multilayer film was observed by atomic force microscopy and scanning electron microscopy. When the absorbance of the (TLQA/CMPVA)n multilayer film increased linearly, the linear equation was y = 0.0267x + 0.07453 and R2 was 0.9735. When five layers of TLQA and CMPVA were assembled, the surface root mean square roughness of TLQA and CMPVA were 21.07 and 65.28 nm, respectively. When the number of layers increased, the film surface roughness increased. The stability of the multilayer films in aqueous solution was determined by a conductivity meter. The (TLQA/CMPVA)n multilayer film was stable in water. The results of the research demonstrate for the first time that TLQA and CMPVA could be assembled and successfully driven by electrostatic forces. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44416.  相似文献   

12.
With many advantages like low-cost preparation, excellent electrical properties, and high catalytic activity; carbon allotropes are the most expected carbon materials to substitute the expensive Platinum (Pt) as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). In the present study, the photovoltaic behaviors of DSSCs fabricated with graphene, multiwalled carbon nanotubes (MWCNTs), and Pt films CEs, respectively, were compared. The graphene and MWCNTs CEs films were prepared by doctor blading the graphene and MWCNTs pastes on Indium tin oxides (ITOs) glass substrates. The structural, morphological, and compositional properties of these carbon CEs viz. graphene and MWCNTs were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and energy dispersive X-ray (EDX), respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed for the examination of electrochemical and catalytic properties of Pt as well as carbonaceous CEs. These low-cost graphene and MWCNTs CEs were employed in the sandwich-structured DSSCs having ZnO-graphene nanocomposite films as photoanodes. The photoconversion efficiency (η) values of as prepared DSSCs were measured under AM 1.5 illumination (100?mW?cm?2). The DSSCs with graphene CE and MWCNTs CE performed with efficiency values of 2.26% and 2.04%, respectively. The performance of these carbonaceous CEs are comparative to that of Pt CE which indicates the practicability of carbon based nanomaterials in DSSCs as low cost alternatives to the expensive Pt.  相似文献   

13.
This study aims to address an issue to a subject that is still less present in literature: the adherence of polypyrrole (PPy) films on bioinert substrate. The poly(dopamine) (PDA) assisted deposition of PPy film on titanium substrate was performed in two steps. The chemical self-polymerization of dopamine was performed as a preliminary step from dopamine in Tris buffer solution on titanium substrate. Then, the resulted poly(dopamine) layer consisting of anchors with strong interactions with Ti surface was a new suitable substrate for polypyrrole film electrochemical deposition. The new PDA–PPy films were characterized in terms of interest properties for the desired biomedical applications: adherence, electrochemical stability of PDA–PPy film, wettability, topography, morphology and antibacterial effect. The poly(dopamine) assisted deposition of PPy film has been shown to be a facile and efficient route to improve the adhesion of PPy film on titanium maintaining or improving the properties of polymeric film.  相似文献   

14.
Polypyrrole (PPy) is a promising conductive polymer (CP) with electrical versatility, easy synthesis and functionalization, stability, and biocompatibility. Diverse architectures have been adopted to improve PPy performance, but the direct and precise patterning of various architectures remains challenging. Here, the unique formation of a PPy membrane on the air/water interface of a droplet solution containing ammonium persulfate and phytic acid is investigated. When a PPy thin film forms on the air/water interface, the top of the droplet rapidly flattens. The formation procedure and final structure of the PPy thin film are visualized and quantitatively investigated. Unlike the typical globular structure of PPy, the self‐assembled PPy film surface fabricated in this study is very organized and regularly shaped. This well‐ordered membrane may have a very high buckling strength greater than the surface tension of the solution. The proposed precise fabrication method is simple and inexpensive for fabricating patterned functional membranes. These results provide new insight into the fabrication of CP and their applications in various practical electromaterial engineering fields.  相似文献   

15.
A novel architecture of graphene wrapped copper–nickel (Cu–Ni) nanospheres (NSs)/graphene film was proposed to be TCO- and Pt-free counter electrode (CE) with high electrocatalytic activity for dye-sensitized solar cells (DSSCs). The novel architecture CE is composed of highly conductive graphene film, Cu–Ni alloy NSs and the wrapping graphene on the surface of alloy NSs. The graphene film as an electrically conductive layer was synthesized by chemical vapor deposition (CVD) on the insulating SiO2 substrate, and graphene wrapped Cu–Ni alloy catalyst NSs on the graphene film were in situ formed by the reduction of Cu–Ni acetate and graphene growth using CVD. The graphene wrapped Cu–Ni NSs/graphene film CE shows much superior electrocatalytic activity, compared with graphene film, and the power conversion efficiency of 5.46% was achieved in DSSC devices, which is close to that of Pt/FTO electrode (6.19%). Therefore, the novel architecture of graphene wrapped Cu–Ni NSs/graphene film CE may be used as Pt- and TCO-free CEs for low-cost, high performance DSSCs.  相似文献   

16.
Due to the advantages of both rapid electron transport of reduced graphene oxide (rGO) sheet and high catalytic performance of ordered mesoporous carbon (OMC), composites of OMC with rGO (G@OMC) have been prepared through the hard-template approach and used as efficient counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). When compared with pure OMC, the as-obtained G@OMC composites exhibit a higher electrocatalytic activity for the reduction of triiodide, owing to the synergetic effect between rGO and OMC. As a consequence, the DSSCs assembled with this G@OMC (CE show an improved photovoltaic conversion efficiency of 6.38% compared with 5.67% for DSSCs assembled with OMC CE, which could compete with the efficiency (7.05%) produced by the Pt CE under the same conditions.  相似文献   

17.
Thin films of alternating layer composition were constructed from the polyelectrolyte complex PEDOT:PSS and the polycation PEI, using ionic self assembly (ISA). The PEI/PEDOT:PSS system displays a consistent trend in film growth, as evidenced by UV-visible spectroscopy and ellipsometry. We find that the overall density of PEDOT increases with increasing number of layers. The density of PSS during multilayer deposition differs from PEDOT, with a sharp drop in density between the 3rd and 6th bilayers. Combining film deposition estimates with contact angle measurement, we distinguish three regions of growth, separated by the 3rd and 6th layers. We ascertain that a constant level of interpenetration between PEI and PEDOT:PSS is reached by the 6th layer. Results from kinetics experiments and pH variation reveal a local increase in pH for the PEDOT species as it comes into contact with the PEI surface. Electrochemical characterization indicates that our films have an interpenetrated PEDOT network and a relatively hydrophilic surface. We demonstrate that ISA can be used to generate robust thin films, stable over a large pH range, whose coloration and conductivity may be manipulated on a large scale using applied voltage, and may be fine-tuned by changing the pH. The films exhibit electrochromic properties similar to other PEDOT derivatives, with a change in transmittance of 51% for 16 bilayers at 643 nm.  相似文献   

18.
Organic–inorganic hybrid multilayer films were prepared on a precoated cationic glass substrate by using a layer‐by‐layer (LbL) electrostatic self‐assembly technique with poly(diallyldimethylammonium chloride) as a polycation and submicron‐sized stable amorphous calcium carbonate (ACC) composite particles. The ACC composite particles (ACP) stabilized with poly(acrylic acid) were obtained by a carbonate controlled‐addition method. The average particles size of ACP was (1.8 ± 0.4) × 102 nm. An ethanolic dispersion of ACP was used for the LbL electrostatic self‐assembly technique on the precoated substrate due to instability of ACP in water. The deposition of the particles was confirmed by SEM analysis. The film thickness of the multilayer assembly increased from 230 to 710 nm with increasing the deposition layers. The FTIR spectra of scratched multilayer samples showed characteristic broaden peaks of ACC. The amorphous phase was stable after the LbL assembly process as well as after 2 months in a dry film state. POLYM. COMPOS., 36:330–335, 2015. © 2014 Society of Plastics Engineers  相似文献   

19.
The goal of this study is to determine the electrically conductivity of the polymers poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate): N-methyl-2-pyrrolidinone (PEDOT: PSS: NMP) and PEDOT: PSS when blended with polyvinyl alcohol (PVA). While the conducting polymers have high conductivity when not blended with PVA, they are brittle and difficult to spin-coat. Thus, the motivation for this study is to develop blends of these two conducting polymers with PVA to produce a material with optimized mechanical properties and that can also be spin-coated. The blends are produced using aqueous preparations of these materials. Mixtures of various weight percentages (wt %) of PEDOT: PSS: NMP and PEDOT: PSS are prepared and spin-coated on glass slides to form thin films. In the blends, the film conductivity increases with increasing content of either PEDOT: PSS: NMP or PEDOT: PSS. For example, 100 wt % of PEDOT: PSS: NMP and 60 wt % of PEDOT: PSS: NMP blended with PVA exhibit conductivities of, respectively, 10 and 4.02 S/cm. In contrast, conductivities of only 0.0525 and 0.000506 S/cm are observed, respectively, for 100 wt % of PEDOT: PSS and 60 wt % of PEDOT: PSS content in the PEDOT: PSS/PVA blends (No NMP). The addition of the NMP enhances the electrical conductivity by two to five orders of magnitude (depending on the amount of PVA in the blend) due to conformational change of PEDOT chains. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Water-resistant poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are valuable in biomedical applications; however, they typically require crosslinkers to stabilize the films, which can introduce undesired aggregation or phase separation reactions. Herein, a dipping-based process to prepare PEDOT:PSS films on nonplanar surfaces without crosslinker is developed. Sequential soaking of a dip-coated PEDOT:PSS film in ethanol and water imparts water resistance to the film. Microscopic and spectroscopic techniques are used to monitor the process and confirm that the ethanol soaking elutes the excess PSS from the film bulk, which stabilizes the film prior to the water-soaking process. The obtained films act as conductors and semiconductors on curved surfaces, including 3D-printed objects. A film deposited on a curved surface is successfully applied as the channel layer in a neuromorphic organic electrochemical transistor. This approach can enable integrated bioelectronic and neuromorphic applications that can be readily deployed for facile prototyping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号