首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel macroporous, hydrophilic microspheres with a surface layer of crosslinked poly(aspartic acid) were synthesized. In this study, macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)] microspheres with pore size around 370 nm were first obtained through the surfactant reverse micelle swelling method, and the poly(GMA-co-EGDMA) was aminated by ethylene diamine to form poly(GMA-NH2). The polysuccinimide was grafted onto the surface of poly(GMA-NH2) microspheres and crosslinked by hexamethylendiamine and γ-aminopropyltriethoxysilane, respectively, and then hydrolyzed to obtain the poly(aspartic acid)-functionalized macroporous microspheres. The functionalized hydrophilic microspheres were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, mercury porosimetry, and elemental analysis. The metal ion adsorption capacity was also studied. The FTIR, XPS, and elemental analysis confirmed the poly(aspartic acid) functionalization of the poly(GMA-co-EGDMA) microspheres. SEM and mercury porosimetry showed there was little effect of this surface chemical modification on microsphere porosity, and the obtained macroporous microspheres exhibited excellent thermal stability and adsorption for Ag(I), presenting great potential for applications in adsorption, fixation, and separation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47441.  相似文献   

2.
A styrene–butadiene–styrene triblock copolymer (SBS) was functionalized with glycidyl methacrylate (GMA). Grafting reactions were carried out in an internal mixer at 170°C, using dicumyl peroxide (DCP) as an initiator. The effect of three variables, % GMA, % DCP, and reaction time, on grafting were studied using a factorial design to analyze the experimental data. GMA was grafted onto SBS and its incorporation increased with the % GMA added. The factors levels studied indicated that was an optimum % DCP point about 0.1% w/w to achieve the best incorporation and conversion values. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2074–2079, 2003  相似文献   

3.
Fe3O4/poly(l ‐glutamic acid) (P‐l ‐Glu) magnetic microspheres were synthesized in an l ‐glutamic acid solution by coprecipitation and a dehydration condensation reaction and were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and ζ‐potential measurement. P‐l ‐Glu was coated on the surface of Fe3O4 microspheres. The average particle diameter of Fe3O4/P‐l ‐Glu was 388 nm and dispersed homogeneously in water. The adsorption of Cu(II) ions on Fe3O4/P‐l ‐Glu was further studied. The effect of different pH values and reaction times on the adsorption of Fe3O4/P‐l ‐Glu was discussed. The adsorption equilibrium was reached in 40 min, and the maximum adsorption for Cu(II) ions was more than 500 mg/g; this value occurred at pH 8 in water. The adsorption dynamic process fit the Freundlich isotherms well, and the adsorption kinetics followed the adsorption mechanism of the pseudo‐second‐order equation, which was the main complexation reaction. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43730.  相似文献   

4.
An epoxy‐group‐containing monomer, glycidyl methacrylate (GMA), was grafted onto poly(vinylidene fluoride) powder via preirradiation‐induced emulsion graft polymerization. The existence of graft chains was proven by chemical structure characterization with Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy analysis. The degree of grafting was calculated by means of fluorine content analysis. A kinetic study indicated that, with the emulsion graft polymerization system, the GMA conversion rate was high, exceeding 80%. The variation in the molecular weight of the grafted polymer was measured by gel permeation chromatography, and its crystallinity was investigated with differential scanning calorimetry. The epoxy groups in graft chains were found to be suitable for further chemical modification. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The poly(methylacrylic acid) modified by silane [poly(methylacrylic acid‐co‐vinyl triethoxylsilane) (PMAA)] was prepared via free‐radical polymerization with different mass ratios of methylacrylic acid to vinyl triethoxylsilane (VTES). The swelling performance of the prepared PMAA in different solutions with various pH values, salt species (NaCl and CaCl2), and concentrations was investigated in detail. The results indicated that the introduction of silane boosted the stability of the obtained PMAA in aqueous solutions in the presence of an increased quantity of VTES additive. Meanwhile, the different swelling ratios of PMAA in various pH solutions showed a high pH responsivity. In addition, we found that when the PMAA underwent a number of swelling–deswelling cycles, it demonstrated the good reversibility properties when the pH value of the swelling medium was changed from 9.0 to 1.4. Moreover, the swelling mechanism of PMAA in different solutions with different pH values was investigated. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40403.  相似文献   

6.
The adsorption capacity of UO in the presence of Pb(II) and Cd(II) ions was investigated with amidoximated poly(glycidyl methacrylate) (PGMA) microbeads with an average size of 135 μm packed in a glass column (0.5‐cm i.d. and 20‐cm length, flow rate = 3 mL/min) under competitive conditions. A differential pulse polarography technique was used for the determination of trace quantities of uptaken elements by the measurement of the reduction peak currents at ?200/?950, ?400, and ?600 mV (vs a saturated calomel electrode) for UO, Pb(II), and Cd(II) ions, respectively. When only UO was found in the eluate, its adsorption was 85.3% from a 50 μM initial solution. However, when there was UO with binary systems of Pb(II) or Cd(II), it was 78.2 and 76.3%, respectively. On the other hand, in a ternary mixture of UO with Pb(II) and Cd(II), the adsorption was found to be 75.2% with the same initial concentration. According to the results, the competitive adsorption studies showed that these amidoximated PGMA microbeads had good adsorption selectivity for UO with the coexistence of Pb(II) and Cd(II) ions. The ionic strength of the solution also influenced the UO adsorption capacity of the amidoximated PGMA microbeads. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4168–4172, 2007  相似文献   

7.
A novel preparation method of micron‐sized non‐porous magnetic polymer microspheres with immobilized metal affinity ligands was developed. A modified suspension polymerization of methacrylate (MA) and divinylbenzene (DVB) was performed in the presence of oleic acid‐coated magnetic Fe3O4 nanoparticles to obtain magnetic poly (methacrylate‐divinylbenzene) (mPMA‐DVB) microspheres. Through ammonolysis using ethylenediamine (EDA) and subsequent carboxymethylation with chloroacetic acid, magnetic polymer microspheres with chelate ligands of iminodiacetic acid (IDA) were obtained. Charging with copper ions resulted in magnetic polymer microspheres capable of binding proteins that display metal affinity. The morphology, magnetic properties, and composition of magnetic polymer microspheres were characterized with scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FTIR), respectively. Bovine hemoglobin (BHb) was adopted as a model protein to investigate their affinity adsorption capacity. It was found that the adsorption capacity was as high as 168.2 mg/g microspheres and with rather low non‐specific adsorption. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2174–2180, 2005  相似文献   

8.
Per- and polyfluoroalkyl substances (PFASs) are among the emerging pollutants of public health and the environment due to environmental persistence, bioaccumulation, and potential toxicity. Removal of PFAS under mild conditions is a challenge. Therefore, employment of organic functionality immobilized on polymeric sorbents has driven significant attention. Herein, new imidazolium-based ionic liquid (IIL) covalently grafted on poly (glycidyl methacrylate) (PGMA) support was synthesized successfully and characterized by Fourier transform infrared, scanning electron microscope, and thermal gravimetric analysis. The functionalized imidazolium ionic liquid-based PGMA was applied in perfluorooctanoic acid (PFOA) removal from an aqueous solution. The effect of contact time, adsorbent dose, temperature, pH, and counter anions investigated on the extent of adsorption has been investigated. The concentration of PFOA solutions was measured by ethyl violet active substances assay, and equilibrium data were analyzed by Langmuir, Freundlich and Tempkin isotherms. The experimental results have been fitted to Langmuir model at ambient temperature and the maximum monolayer coverage capacity (qm) was found to be 769.23 mg/g. Also the thermodynamic parameters were obtained, and observed that the adsorption of PFOA onto imidazolium iodide-PGMA was an endothermic and spontaneous process at the temperatures under investigation.  相似文献   

9.
Uniform poly(glycidyl methacrylate‐divinyl‐benzene) (P(GMA‐DVB)) and poly(glycidyl methacrylate‐ethylene dimethacrylate) (P(GMA‐EGDMA)) porous microspheres with several 10 μm were successfully prepared by membrane emulsification–polymerization technology. Conventional suspension polymerization method was first investigated by examining the effects of recipe components on the morphologies of P(GMA‐DVB), including stabilizer, diluent, and crosslinker to select a optimum recipe. The membrane emulsification–polymerization process was developed to prepare uniform PGMA porous microspheres as the following: the oil phase composed of monomer, diluent and initiator was pressed through membrane pores into the aqueous phase to form uniform droplets, and subsequent suspension polymerization was carried out. GMA and 4‐methyl‐2‐pentanol in the selected recipe were relatively hydrophilic, and therefore oil phase could wet the hydrophilic glass membrane and bring about polydispersed droplets. However, when isooctane was added as a component of diluents, the uniform droplets could be prepared by membrane emulsification method. In the membrane emulsification–polymerization, the coagulation between microspheres obviously decreased while yield of microspheres slightly increased. To extend the application of PGMA, as a trail, uniform P(GMA‐EGDMA) porous microspheres were also successfully prepared by membrane emulsification–polymerization with a isooctane contained diluent, even though EGDMA was more hydrophilic than DVB. Therefore, recipe was found the important factor to prepare uniform PGMA porous microspheres using membrane emulsification–polymerization method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5018–5027, 2006  相似文献   

10.
The facile preparation of nonspherical raspberry‐like poly(methyl methacrylate) (PMMA) particles by seeded dispersion polymerization of methyl methacrylate (MMA) on micron‐sized PMMA seed particles was described. Various polymerization parameters influencing the particle morphology, as well as the polymerization kinetic and morphological stability, were investigated in detail. It was found that the following polymerization conditions were necessary to prepare this kind of nonspherical particles: a relatively low temperature, an appropriate ratio of seed/MMA, an initiator with a relatively low decomposition rate, and a relatively low initiator concentration. These particles showed very good morphological stability at room temperature, but they changed to the spherical ones when heat treated at 60°C in methanol solution of MMA. The experimental results suggest that the prepared PMMA particles were kinetically favored and the localized polymerization of the MMA monomer on PMMA seed particle surface was responsible for the formation of the raspberry‐like particles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
A macromolecular hindered phenol antioxidant, polyhydroxylated polybutadiene containing thioether binding 2,2′‐thiobis(4‐methyl‐6‐tert‐butylphenol) (PHPBT‐b‐TPH), was synthesized via a two‐step nucleophilic addition reaction using isophorone diisocyanate (IPDI) as linkage. First, the ? OH groups of PHPBT reacted with secondary ? NCO groups of IPDI to form the adduct PHPBT‐NCO, then the PHPBT‐b‐TPH was obtained by one phenolic ? OH of 2,2′‐thiobis(4‐methyl‐6‐tert‐butylphenol) (TPH) reacting with the PHPBT‐NCO. The PHPBT‐b‐TPH was characterized by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (1H‐NMR), 13C‐NMR, and thermogravimetric analysis, and its antioxidant activity in natural rubber was studied by an accelerated aging test. Influences of reaction conditions on the two nucleophilic reactions between ? OH group and ? NCO group were investigated. In addition, catalytic mechanism for the reaction between PHPBT‐NCO and TPH was discussed. The results showed that the adduct PHPBT‐NCO could be obtained by using dibutyltin dilaurate (DBTDL) as catalyst, and the suitable temperature and DBTDL amount were 35°C and 3 wt %, respectively. However, triethylamine (TEA) was more efficient than DBTDL to catalyze the reaction between PHPBT‐NCO and TPH because of steric hindrance effect. In addition, it was found that the thermal stability and antioxidant activity of PHPBT‐b‐TPH were higher than those of the low molecular weight antioxidant TPH. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40942.  相似文献   

12.
On the basis of the short‐chained modifier of stearyl‐alcohol poly(ethylene oxide) ether (AEO), an entrapping modification was carried out on the polypropylene (PP) surface for hydrophilic improvement. A swelling layer was confirmed locating in the amorphous region on the PP surface, from which the modifiers could penetrate into the surface. The AEO‐8 modifier achieved the optimal hydrophilic modification on the surface with a contact angle of 20.6° and modifier coverage of 19.2%. A microphase separation was speculated to occur between the poly(ethylene oxide) (PEO) chain of AEO and the PP substrate in the entrapping surface, after which surface‐enriched PEO chains could improve surface hydrophilicity, simultaneously, reserved stearyl chains in the surface could approach modifier fixation. Water immersion durability of the modified surface could be improved by establishing a covalent linkage in the surface‐fixed structure. This work gives more comprehensive insights in the entrapping modification on the semi‐crystalline PP surface based on the short‐chained and block modifier. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43607.  相似文献   

13.
Novel single‐ion‐conductor polymer (SCP) electrolytes based on oxalate‐chelated‐borate‐structure‐grafted poly(vinyl formal) (PVFM) were synthesized via a solution casting technique. The influence of the molar ratio of ? OH and boron atoms in PVFM on the ionic conductivity (σ) of the SCP electrolytes at different temperatures was investigated with alternating‐current impedance spectroscopy in the frequency range of 0.01 Hz to 1 MHz. The results show that σ of the SCP electrolytes at 15–60 °C was about 10?6–10?5 S/cm, and temperature dependence of the conductivity of the electrolytes followed the Vogel–Tamman–Fulcher relationship. The dielectric behaviors of the SCP electrolytes were analyzed in view of the dielectric permittivity and dielectric modulus of the electrolytes. Dielectric analysis revealed that the transport of Li+ ions in the PVFM‐based SCP electrolytes mainly followed a hopping mechanism coupled with the segmental motion of the polymer chain. Additionally, a dielectric relaxation was found in the high‐frequency region; this was a thermally activated result and also implied the appearance of carrier hopping. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43510.  相似文献   

14.
Three types of high molecular weight polyarylether adsorbents with different molar ratios of carboxyl and phenylene were designed and synthesized through direct polycondensation in mixture solvents. The as‐prepared polymers were characterized by FTIR, 1H‐NMR, TGA, DSC, SEM, EDS, and GPC in order to study the regularity of polymeric adsorption/thermostability performances. Because of the highest molar ratio of carboxyl and phenylene, PAES‐C‐Na presented the highest adsorption capacity of Cu2+ compared to PAESK‐C‐Na and PAES; therefore, PAES‐C‐Na was opted to study the impacts of adsorbent dosage, pH, contact time, and initial concentration on the adsorption of Pb2+ and Cd2+. Moreover, a kinetic analysis revealed that the adsorption process followed pseudo‐second‐order model, while the thermodynamic experimental data properly fitted with the Freundlich model. The multi‐component competitive adsorption capacity followed the order Pb2+ > Cu2+ > Cd2+. Additionally, the regeneration tests indicated that PAES‐C‐Na still possessed the excellent adsorption capacity after several recycles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41984.  相似文献   

15.
The possibility of adjusting the degree of hydrophilic functionalization in polymeric microparticles with a hydrophobic skeleton makes it possible to obtain adsorbents and catalyst microparticles that may show better performance. In this regard, in this study, gel‐type poly(styrene‐co‐divinyl benzene) microparticles were chloromethylated and subsequently aminated, and the quantitative effect of the chloromethylation reaction conditions on the final degree of functionalization achieved were examined. In the chloromethylation route, methylal, thionyl chloride, and a Friedel–Craft catalyst were used. From the experimental results, two models were obtained by multiple linear regression relating the chloromethylation conditions to the anion‐exchange capacity (AEC) achieved and to the replaceable chlorine content, according to which the achievement of a high degree of useful functionalization within the microparticles entailed chloromethylation with low methylal/polymer molar ratios and high thionyl chloride/polymer molar ratios, relatively high temperatures, and short reaction times; all of these values were within the ranges used in this study. Additionally, we found that the highest values of AEC could be reached with a methylal/thionyl chloride molar ratio close to unity. The models obtained could be useful for the synthesis of microparticles with required degrees of functionalization, that is, with the chosen hydrophilicity/hydrophobicity ratio. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4054–4065, 2013  相似文献   

16.
Polymer‐coated SiO2 particles are prepared by precipitation of poly[styrene‐co‐(acrylic acid)] on SiO2 microspheres through an improved phase inversion method. The diffusion resistance of the polymer membrane was considered to be the critical reason for producing tailor‐made polyethylene by catalysts supported on these polymer‐coated particles. This paper employs pulsed field gradient NMR (PFG‐NMR) to distinguish diffusion of n‐hexane in different regimes, i.e., in the space between each particle, the pores in SiO2 and the polymer shell, by their respective diffusion coefficients. By varying the observation time, the time scale of the molecular exchange is discussed. A three‐region ansatz was used to interpret the exchange and diffusion in polymer‐coated SiO2 system, and was compared with results acquired with noncoated particles. At long diffusion times, the mean‐squared displacement, and thus the averaged self‐diffusion coefficient, of hexane in the system of polymer‐coated SiO2 particles is significantly reduced. The PSA membrane is identified as an efficient barrier against molecular exchange between the pores in SiO2 and the intraparticle space. Consistently, the relaxation measurements indicated that the mobility of n‐hexane molecules, especially the rotation of n‐hexane, was limited by the PSA membrane. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40160.  相似文献   

17.
The poly(2‐(diethylamino)ethyl methacrylate)/palygorskite (PDEAEMA/PAL) composite microspheres were prepared via Pickering emulsion polymerization using palygorskite (PAL) as an emulsifier. The morphology, chemical structure, and content of PDEAEMA/PAL composite microspheres were investigated by polarizing optical microscopy, scanning electron microscopy (SEM), Fourier‐transform infrared (FT‐IR) spectroscopy, and thermal gravimetric analysis (TGA). The pH‐responsive behavior of composite microspheres was studied by measuring their size at different pH values. Furthermore, their release behavior was investigated using rhodamine B (RhB) as a model molecule. It was proven that the release properties of RhB from PDEAEMA/PAL composite microspheres could be controlled by adjusting the pH values. The study of release kinetics found that Higuchi model was fit for RhB release from PDEAEMA/PAL composite microspheres at pH 5.0, 7.4, and 10.0. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42179.  相似文献   

18.
Ultra‐lightweight heat resisting poly(methyl methacrylate) (PMMA)/graphite microspheres were successfully prepared via in situ suspension polymerization. The Fourier transform infrared and X‐ray powder diffraction results confirmed the successful preparation of the composite microspheres. Field emission scanning electron microscope analysis illustrated that the graphite particles were dispersed in microspheres and the PMMA/graphite composite microspheres had good sphericity and roundness. Furthermore, density analysis indicated that the apparent density of composites microspheres was about 1.055–1.135g/cm3 which was suitable for the transmission with water carrying. The results from thermodynamic test revealed that the thermal stability of the composite was significantly improved with increasing graphite content, which could be used as ultra‐lightweight proppant in deep underground. In addition, the crushing rate decreased to 0.5% with graphite ratio of 3.0% at the pressure of 69 MPa. Therefore, PMMA/Graphite composite microspheres exhibit a promising application in petroleum or gas exploitation as water carrying fracturing proppants. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41924.  相似文献   

19.
High‐density polyethylene (HDPE)/poly(ethylene terephthalate) (PET) blends were prepared by means of melt extrusion with ethylene–butyl acrylate–glycidyl methacrylate terpolymer (EBAGMA) as a reactive compatibilizer. The effects of the EBAGMA and PET contents, recovery temperature, and stretch ratio on the thermostimulative shape‐memory behavior of the blends were studied. The results show that the addition of EBAGMA to the HDPE/PET blends obviously improved the compatibility and the shape‐memory effects of the blends. The response temperature was determined by the melting point of HDPE, and the shape‐recovery ratio of the 90/10/5 HDPE/PET/EBAGMA blend reached nearly 100%. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The novel block copolymer poly(benzyl glutamate) (PBLG)–polomamer–PBLG were synthesized from glutamic acid and poloxamer in six steps with three different molecular weights, and another new block copolymer, poly(glutamic acid) (PGA)–poloxamer–PGA, was obtained by the benzyl deprotection of PBLG–poloxamer–PBLG. The obtained compounds were characterized by IR spectroscopy, gel permeation chromatography, and 1H‐NMR. The in vitro biological degradation and water absorption of PBLG showed that a greater proportion of PBLG in the copolymer led to a slower degradation and weaker water absorption, so the speed of degradation and water absorption could be adjusted through adjustment of the ratio of poloxamer. Both PBLG–poloxamer–PBLG and PGA–poloxamer–PGA exhibited lower cytotoxicity and good biocompatibility in the methyl thiazolyl tetrazolium (MTT) assay. The results show that both block polymers are promising as drug‐carrier materials. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号